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Abstract
Finding the distribution of the velocities and pressures of a fluid by solving the Navier–Stokes
equations is a principal task in the chemical, energy, and pharmaceutical industries, as well as in
mechanical engineering and in design of pipeline systems. With existing solvers, such as
OpenFOAM and Ansys, simulations of fluid dynamics in intricate geometries are computationally
expensive and require re-simulation whenever the geometric parameters or the initial and
boundary conditions are altered. Physics-informed neural networks (PINNs) are a promising tool
for simulating fluid flows in complex geometries, as they can adapt to changes in the geometry and
mesh definitions, allowing for generalization across fluid parameters and transfer learning across
different shapes. We present a hybrid quantum PINN (HQPINN) that simulates laminar fluid flow
in 3D Y-shaped mixers. Our approach combines the expressive power of a quantum model with
the flexibility of a PINN, resulting in a 21% higher accuracy compared to a purely classical neural
network. Our findings highlight the potential of machine learning approaches, and in particular
HQPINN, for complex shape optimization tasks in computational fluid dynamics. By improving
the accuracy of fluid simulations in complex geometries, our research using hybrid quantum
models contributes to the development of more efficient and reliable fluid dynamics solvers.

1. Introduction

Computational fluid dynamics (CFD) solvers are primarily used to find the distribution of the velocity
vector, v, and pressure, p, of a fluid (or several fluids) given the initial conditions (e.g. initial velocity profile)
and the geometrical domain where the fluid flows [1, 2]. To do this, it is necessary to solve a system of
differential equations [3] called the Navier–Stokes (NS) equations that govern the fluid flow [4]. A
well-established approach is to use numerical CFD solvers from several vendors, as well as publicly accessible
alternatives, such as OpenFOAM [5] or Ansys [6]. These solvers discretize a given fluid volume into several
small parts known as cells [7], where it is easier to get an approximate solution and then join the solutions of
all the cells to get a complete distribution of the pressure and velocity over the entire geometrical domain.

While this is a rather crude explanation of how CFD solvers work, discretizing a large domain into
smaller pieces accurately captures one of their main working principles [8]. The runtime of the computation
and the accuracy of the solution both sensitively depend on the fineness of discretization, with finer grids
taking longer but giving more accurate solutions. Furthermore, any changes to the geometrical parameters
necessitate the creation of a new mesh and a new simulation. This process consumes both time and resources
since one has to remesh and rerun the simulation every time a geometrical parameter is altered [9].

We propose a workflow employing physics-informed neural networks (PINNs) [10] to escape the need to
restart the simulations whenever a geometrical property is changed completely. A PINN is a new promising
tool for solving all kinds of parameterized partial differential equations (PDEs) [9], as it does not require
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many prior assumptions, linearization or local time-stepping. One defines an architecture of the neural
network (number of neurons, layers, etc) and then embeds physical laws and boundary conditions into it via
constructing an appropriate loss function, so the prior task immediately travels to the domain of
optimization problems.

For the classical solver, in the case of a parameterized geometric domain problem, getting accurate
predictions for new modified shapes requires a complete program restart, even if the geometry has changed
slightly. In the case of a PINN, to overcome this difficulty, one can use the transfer learning method [11]
(section 3.6), which allows a model previously trained on some geometry to be trained on a slightly modified
geometry without the need for a complete reset.

Also, using a trained PINN, it is easy to obtain a solution for other parameters of the PDE equation (e.g.
kinematic viscosity in the NS equation [4], thermal conductivity in the heat equation, etc) with no additional
training or restart of the neural network, but in the case of traditional solvers, restarts cannot be avoided.

One of the features that makes PINNs appealing is that they suffer less from the curse of dimensionality.
Finite discretization of a d-dimensional cube with N points along each axis would require Nd points for a
traditional solver. In other words, the complexity of the problem grows exponentially as the sampling size d
increases. Using a neural network, however, one can define a Rd → Rmapping (in case of just one target
feature) with some weight parameters. Research on the topic suggests that the amount of weights/complexity
of a problem in such neural networks grows polynomially with the input dimension d [12, 13]. This
theoretical foundation alone allows PINNs to be a competitive alternative to solvers.

It is worth noting that although a PINN does not require Nd points for inference, it does require many
points for training. There exist a variety of sampling methods, such as latin hypercube sampling [14], Sobol
sequences [15], etc which can be used to improve a PINN’s convergence on training [16]. However, a simple
static grid of points is used in this work for the purpose of simplicity.

Classical machine learning can benefit substantially from quantum technologies. In [17], quantum
computing is used in a similar problem setting. The performance of the current classical models is
constrained by the high computing requirements. Quantum computing models can improve the learning
process of existing classical models [18–24], allowing for better target function prediction accuracy with
fewer iterations [25]. In many industries, including the pharmaceutical [26, 27], aerospace [28],
automotive [29], logistics [30] and financial [31–35] sector quantum technologies can provide unique
advantages over classical computing. Many traditionally important machine learning domains are also
getting potential benefits from utilizing quantum technologies, e.g. in image processing [36–39] and natural
language processing [40–43]. Solving nonlinear differential equations is also an application area for quantum
algorithms that use differentiable quantum circuits [44, 45] and quantum kernels [46].

Recent developments in automatic differentiation enable us to compute the exact derivatives of any order
of a PINN, so there is no need to use finite differences or any other approximate differentiation techniques. It,
therefore, seems that we do not require a discretized mesh over the computational domain. However, we still
need a collection of points from the problem’s domain to train and evaluate a PINN. For a PINN to provide
an accurate solution for a fluid dynamics problem, it is important to have a high expressivity (ability to learn
solutions for a large variety of, possibly complex, problems). Fortunately, expressivity is a known strength of
quantum computers [47–49]. Furthermore, quantum circuits are differentiable, meaning their derivatives
can be calculated analytically, which is essential for noisy intermediate-scale quantum (NISQ) devices.

In this article, we propose a hybrid quantum PINN (HQPINN) shown in figure 1 to solve the NS
equations with a steady flow in a 3D Y-shape mixer. The general principles and loss function of PINN
workflow are described in section 2. The problem description, including the geometrical details, is presented
in section 3 while in sections 3.5 and 3.7, we describe classical and hybrid PINNs in detail. Section 3.1
explains the intricacies of PINN’s training process and simulation results. A transfer learning approach,
applied to PINNs, is presented in section 3.6. Conclusions and further plans are described in section 4.

2. PINNs for solving PDEs

PINNs were originally introduced in [10]. The main idea is to use a neural network—usually a feedforward
neural network like a multilayer perceptron—as a trial function for a PDE’s solution. Let us consider an
abstract PDE:

D [ f(r, t) ;λ] = 0, (1)

where Ω⊂ Rd is the computational domain, r ∈ Ω is a coordinate vector, t ∈ R is time,D is a nonlinear
differential operator with λ standing in for the physical parameters of the fluid and f(r, t) is a solution
function.
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Figure 1. Scheme for the implementation of the HQPINN’s training process and its architecture. HQPINN takes the (x,y,z)
coordinates of the points, sampled in the geometrical domain (purple circles), and yields (v,p) as output, where v is the velocity
vector (green circles) and p is the pressure (orange circle). The neural network itself begins with a classical part, which is a
multilayer perceptron with l layers of n neurons. Then, there is a parallel hybrid network, which consists of a Quantum
depth-infused layer (a variational quantum circuit) and a multilayer perceptron. A ‘Filter’ mechanism divides input points into
four groups—fluid domain, walls, inlets, and outlets—each with its specific constraint (a boundary condition or a PDE). The
error for each constraint is then calculated and incorporated into the total loss, which is then minimized via gradient descent to
refine the model’s predictions. The process iteratively adjusts the network’s weights using full-batch gradient descent, ensuring
that every point in the geometrical domain contributes to the whole solution that respects both the fluid dynamics within the
domain and the conditions at its boundaries. The training process is described in section 3.1.

Let us consider a neural network u(r, t) that takes coordinates, r, and time, t, as input and yields some
real value (e.g. the pressure of a liquid at this coordinate at this particular moment).

We can evaluate u(r, t) at any point in the computational domain via a forward pass and compute its
derivatives (of any order) ∂nt u(r, t), ∂

n
r u(r, t) through backpropagation [50]. Therefore, we could substitute

f(r, t) = u(r, t) and try to learn the correct solution for the PDE via common machine learning gradient
optimization methods [51] (e.g. gradient descent).

This approach is inspired firstly by the ability to calculate the exact derivatives of a neural network via
autodifferentiation [52] and secondly by neural networks being universal function approximators [53].

The loss, L, that the PINN tries to minimize is defined as

L= LPDE +LBC, (2)

where LBC is the boundary condition loss and LPDE is the PDE loss.
The boundary condition loss is responsible for satisfying the boundary conditions of the problem (e.g. a

fixed pressure on the outlet of a pipe). For any field value, u, let us consider a Dirichlet (fixed-type) boundary
condition [54]

u(r, t) |r∈B = u0 (r, t) , (3)

where u0(r, t) is a boundary condition and B⊂ Rd is the region where a boundary condition is applied.
If u(r, t) is a neural network function (see section 2), the boundary condition loss is calculated in a

mean-squared error (MSE) manner:

LBC = ⟨(u(r, t)− u0 (r, t))
2⟩B, (4)

where ⟨·⟩B denotes averaging over all the data points r ∈ B that have this boundary condition.

3
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Figure 2. Isometric view of a slice of the cylinder. Color denotes the velocity magnitude for clarity.

The PDE loss is responsible for solving the governing PDE. If we have an abstract PDE (1) and a neural
network function u(r, t), substituting f(r, t) = u(r, t) and calculating the MSE of the PDE gives:

LPDE = ⟨(D [u(r, t) ;λ])2⟩Ω, (5)

where ⟨·⟩Ω means averaging over all the data points in the domain of the PDE.

3. Simulations

In this work, we consider the steady (i.e. time-independent) flow of an incompressible fluid in 3D without any
external forces.

The NS equation (6) and the continuity equation (7) describe this scenario as follows:

− (v ·∇)v+ ν∆v− 1

ρ
∇p= 0, (6)

∇· v= 0, (7)

where v(r) is the velocity vector, p(r) is the pressure, ν is the kinematic viscosity and ρ is the fluid density.
The PDE parameters ν and ρ were previously referred to as λ. For each of the 4 PDEs (3 projections of vector
equation (6) and 1 scalar equation (7)), the LPDE is calculated separately and then summed up.

3.1. Training PINNs
The geometry is a collection of points organized in a .csv file. It is split into four groups: fluid domain, walls,
inlets, and outlets. The fluid domain is the domain in which the NS equations are solved, i.e. where the fluid
flows. The other three groups have boundary conditions described in section 2. While untrained, PINN
produces some random distribution of velocities and pressures. These values and their gradients are
substituted into the corresponding NS equations and boundary conditions. With every iteration, the weights
of the neural network are updated to minimize the error in the governing equations, and our solution
becomes more and more accurate.

The training iteration is simple: the point cloud is passed through the PINN, the MSE loss is calculated
(getting it requires taking gradients of (v,p) at each point of the geometry), the gradient of the loss with
respect to the weights is taken and the parameters are updated.

To visualize the training outcomes of the neural network, we used ParaView [55], and the simulation
results are shown in figure 4(1) for loss and velocity distribution.

3.2. Cylinder flow simulation
At first, we used a simple 3D cylinder flow as a baseline solution for classical PINN. We also validated PINN’s
predictions by comparing them to OpenFOAM’s solution.

In this simulation, we have no-slip boundary condition on the walls, fixed velocity of v0 = 10 mm s−1

on the inlet, and fixed zero pressure p= 0 Pa on the outlet. The fluid is water with standard density
ρ= 1 g cm−3 and ν = 1 mm2 s−1 kinematic viscosity. The cylinder has radius of 2 mm and height of 10 mm
(figure 2). Reynolds number for such flow is 10, so it can be considered laminar.

The training was done on a single NVIDIA A100 GPU for 20000 iterations with an L-BFGS optimizer.
For its training, the model uses 25000 points inside the cylinder, which are taken straight from the mesh
nodes used in OpenFOAM’s simulation. PINN represented the solver’s solution quite well: the relative error
of velocity magnitude averaged over the whole cylinder is 1.2%, and the mean relative error of pressure is
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Table 1. Pressure p and velocity magnitude ∥v∥ relative errors (averaged over the whole geometrical domain) between PINN predicted
solution and reference OpenFOAM solution for different values of kinematic viscosity ν. The values, which model did not train on, are
put in bold.

ν, mm2 s−1 p rel. error, % ∥v∥ rel. error, %

1 10.0 4.7
1.5 2.0 2.8
2 2.7 1.5
2.5 5.9 3.6
3 8.5 5.8
3.5 10.5 7.7
4 12.3 9.4
5 15.1 12.3
10 21.0 24.6

0.8%. Refer to figure 3 for ground truth (OpenFOAM) and prediction (PINN) field values, as well as the
distribution of relative error across the geometry.

The only error spikes both for pressure and velocity fields are located near the inlet edge of the pipe,
where the uniform velocity profile of 10 mm s−1 abruptly changes to 0 due to non-slip boundary condition
on walls, which is somewhat unphysical. This can be corrected by making the inlet velocity profile parabolic
instead of uniform, but we decided to stick to a simple problem statement for the baseline solution.

3.3. Generalization of PINNs
To check if our baseline model possesses any generalization capabilities, we trained the same model as in
section 3.2, but now incorporating 4 input parameters: the x,y,z coordinates and the kinematic viscosity ν,
which was held constant at 1mm2 s−1 for the aforementioned model. Given that we employ a full-batch
strategy, where the optimizer processes the gradient of all points in the geometry simultaneously, such a
modification significantly increases the memory requirements for storing the total gradient. Consequently,
we limited our training set to a set of ν values, {1,2,3,4}mm2 s−1. Nonetheless, we believe this range is
sufficient to explore the generalization capabilities of the classical PINN.

Following the same training regime as in section 3.2, we present the results on the test data in table 1. The
results indicate that the model generalizes well across the range of ν values it trained on.

However, when the model attempts to extrapolate solutions for ν values outside its training range, the
quality of the solutions begins to degrade rapidly. More specifically, the solution tends to converge to the
trivial case of v= 0 as it approaches the end of the pipe. This phenomenon will be revisited and discussed
further in section 3.4, where we attempt simulations on more complex geometries than the current one.

3.4. Y-shapedmixer flow simulation
This time, we try to simulate the flow of liquid in a Y-shaped mixer consisting of three tubes (figure 4). The
mixing fluids are identical and have parameters ρ= 1.0 kg m−3 and ν = 1.0 m2 s−1.

The imposed boundary conditions are as follows:

• no-slip BC on walls: v(r)|walls = 0,
• fixed velocity profile on inlets: v(r)|inlets = v0(r),
• fixed pressure on outlets: p(r)|outlets = p0,

where, v0(r) is a parabolic velocity profile on each inlet and p0(r) = 0.
The PINN was trained via full-batch gradient descent with the Adam optimizer [56] for 1000 epochs and

then with the L-BFGS optimizer for 100 epochs until the gradients vanished and training became impossible.
After the training, the PINN managed to learn a non-trivial downward flow at the beginning of both pipes.
On the edges of these pipes, the velocities become zero, as they should, due to no-slip wall boundary
conditions. However, further down the mixer, the solution degenerates to zero, so it does not even reach the
mixing point. This fact should at least violate the continuity equation because there is an inward flow without
matching outward flow. This problem is primarily caused by gradient vanishing inherent to PINN models.

In an attempt to overcome the challenge, we introduce an HQPINN model in 3.7, which shows better
results in terms of PDE and boundary conditions satisfaction. We also research potential ways of making a
generalizable PINN in 3.2 by employing a transfer learning method.
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Figure 3. (a), (c) and (e) Ground truth pressure and velocity projections. (b), (d) and (f) PINN predicted pressure and velocity
projections. (g) and (h) Relative pressure and velocity magnitude errors between PINN and ground truth (absolute error divided
by maximum pressure or velocity magnitude across the cylinder).

3.5. PINN architecture
In this section, we provide details on the PINN’s architecture. The core of the PINN is a neural network
whose architecture is a multilayer perceptron with several fully connected layers. As shown in figure 1, the
first layer consists of 3 neurons (since the problem is 3D), then there are l= 5 hidden layers with n neurons,
where n= 128 for the cylinder flow and n= 64 for the Y-shaped mixer. For the classical PINN, the ‘Parallel
Hybrid Network’ box is replaced with one fully connected layer n→ 4. There is no quantum layer in the
classical case, so the output goes straight into the filter. Between adjacent layers, there is a sigmoid linear unit
activation function [57]. The PINN takes the (x,y,z) coordinates as inputs and yields (v,p) as its output,
where v is the velocity vector with three components and p is the pressure.

3.6. Transfer learning
Transfer learning is a powerful method of using the knowledge and experience of one model that has been
pretrained on one problem to solve another problem [11, 58]. It is extremely useful because it means that a
second model does not have to be trained from scratch. This is especially helpful for fluid modeling, where
selecting the most appropriate geometrical hyperparameters would otherwise lead to the simulations being
rerun many times.

For transfer learning, we used a model from the previous section as a base, which had α0 = 30◦, where α
is the angle between the right pipe and the x axis (see figure 4). Then, for each α= {31◦,32◦,33◦,34◦,35◦},
we tried to obtain the solution, each time using the previously trained model as an initializer. For example, to
transfer learn from 31◦ to 32◦, we used the 31◦ model as a base and so on. Each iteration is trained for 100
epochs with L-BFGS. Figure 4 shows that the PINN adapts well to changes in the value of α. That is, our
hypothesis was correct: with PINNs, one does not need to completely rerun the simulation on a parameter
change, transfer learning from the base model will suffice.
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Figure 4. (1) Classical model. (a) Loss curve. The classical PINN managed to learn a solution near the entry point well. However,
it vanishes to zero further down the mixer. (2) Transfer learned models. (a) Loss curve. The transfer-learned models trained better
with each iteration, surpassing the original model. (b)–(d) Distributions of the fluid pressure and velocities for the last model
with α= 35◦.

3.7. HQPINN
Quantum machine learning was shown to be applicable to solving differential equations [44–46]. Here, we
introduce a hybrid quantum neural network called HQPINN and compare it against its classical counterpart,
classical PINN. As shown in figure 1, the architecture of HQPINN is comprised of classical fully connected
layers, specifically a multilayer perceptron, coupled with a parallel hybrid network [23]. The latter is a unique
intertwining of a quantum depth-infused layer [26, 48] and a classical layer. Interestingly, the first 15 units
(ϕ1, . . . ,ϕ15, depicted in green) of the layer are dedicated to the quantum layer, whereas the information from
one orange unit proceeds along the classical pathway. This parallel structure enables simultaneous
information processing, thereby enhancing the efficiency of the learning process.

Regarding the quantum depth-infused layer, it is implemented as a variational quantum circuit (VQC), a
promising strategy for navigating the complexities of the NISQ epoch [59]. The NISQ era is characterized by
quantum devices with a limited number of qubits that cannot yet achieve error correction, making strategies
like VQCs particularly relevant [26, 60, 61].

The capacity of HQPINN to direct diverse segments of the input vector toward either the quantum or
classical part of the network equips PINNs with an enhanced ability to process and learn from various
patterns more efficiently. For instance, some patterns may be optimally processed by the quantum network,
while others might be better suited for the classical network. This flexibility in processing contributes to the
robust learning capabilities of HQPINN.

3.7.1. Quantum depth-infused layer
Transitioning into the building blocks of our model, the quantum depth-infused layer takes center stage.
Quantum gates are the basic building blocks for any quantum circuit, including those used for machine
learning. Quantum gates come in single-qubit (e.g. rotation gate Ry(θ), gate that plays a central role in
quantum machine learning) and multiple-qubit gates (e.g. CNOT) and modulate the state of qubits to
perform computations. The Ry(θ) gate rotates the qubit around the y-axis of the Bloch sphere by an angle θ,
while the two-qubit CNOT gate changes the state of one qubit based on the current state of another qubit.
Gates can be fixed, which means they perform fixed calculations, such as the Hadamard gate, or they can be
variable, such as the rotation gate that depends on the rotation angle and may perform computations with
tunable parameters.

To extract the results, qubits are measured and projected onto a specific basis, and the expected value is
calculated. When using the σz Pauli matrix observable, the expected value of the measurement is represented

7
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Figure 5. Hybrid quantum model. (a) Loss curve. (b)–(d) Distribution of the fluid pressure and velocities for the HQPINN at
(α= 30◦). Similarly to the classical model, a non-trivial solution near the entry point is present. However, there is an asymmetry
between the left and the right pipe, which should not be there. This could be an effect of the data encoding strategy.

as: ⟨ψ|σz |ψ⟩, with ψ signifying the wave function that depicts the current state of our quantum system. For a
more detailed understanding of quantum circuits, including logic gates and measurements, standard
quantum computing textbooks such as [62] offer a comprehensive guide.

To refine the functioning of the network we propose, the initial phase of data processing is performed on
a classical computer. Subsequently, these data are integrated into the quantum gate parameters in an
encoding layer (blue gates) repeated d= 5 times, forming part of the quantum depth-infused layer followed
by the variational layer (green gates). Number of repetitions of the variational layerm= 2. As the algorithm
develops, these gate parameters in the variational layer are dynamically adjusted. Finally, at the measurement
level, the qubits are quantified, leading to a series of classical bits as the output.

Conceptually, a quantum algorithm resembles a black box that receives classical information as input and
yields classical information as output. The objective here is to fine-tune the variational parameters such that
the measurement outcome most accurately reflects the prediction function. In essence, this parameter
optimization is akin to optimizing the weights in a classical neural network, thereby effectively training the
quantum depth-infused layer.

3.7.2. Training HQPINN
The HQPINN consists of the classical PINN with weights pre-initialized from the previous stage (as
described in section 3.5), a parallel hybrid network and a fully-connected layer at the end.

The training process of the hybrid PINN does not differ from that of the classical PINN except in the
following ways. Firstly, all calculations are done on the classical simulator of quantum hardware, the
QMware server [63], which has recently been shown to be quite good for running hybrid algorithms [64].

Secondly, how does one backpropagate through the quantum circuit layer? The answer is to use the
‘adjoint differentiation’ method, introduced in [65], which helps to compute derivatives of a VQC on a
classical simulator efficiently.

This time the model was trained for 100 epochs using mini-batch gradient descent with the Adam
optimizer (figure 5). The mini-batch strategy was employed due to the very low training speed of quantum
circuits, as they train on a CPU. We will then compare this model with a purely classical one, with the same
architecture from section 3.5, but this time trained only with mini-batch Adam. All learning
hyperparameters (learning rate, scheduler parameters, batch size) are shared between the quantum and
classical models. Comparing the two, figure 6 shows that the quantum model outperforms the classical one
in terms of the loss value by 21%. As the loss function for PINNs directly corresponds to PDE and BC
satisfaction, it implies that HQPINN has achieved better physical accuracy before the gradient vanish.
However, the mini-batch training strategy for the HQPINN is far from ideal and stems from the large
training time of simulated quantum circuits. Proper hardware backend for highly parallel GPU-accelerated
quantum computing could greatly extend the HQPINN advantage.

Additionally, the question of computational demands scaling is of importance. For the CFD examples
considered in the paper, we used a three-qubit circuit, which is not computationally demanding to execute
on a classical computer. However, with each additional qubit, the runtime of the quantum circuit execution
will approximately double. That means, according to the benchmarks [64], the runtime will become
significant beyond 20 qubits circuits. Nonetheless, with the development of quantum computers, the scaling
is expected to be more favorable as the runtime on a quantum chip would stay constant in case the circuit

8
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Figure 6. Losses for the classical and hybrid quantum PINNs. HQPINN outperforms the classical PINN in terms of loss value due
to higher expressivity.

depth is fixed. Therefore, we believe that for more complex shapes, the simulation would require more data
and, hence, larger HQPINN models require the need of quantum computers for simulation.

4. Discussion

In our investigation, we pursued two distinct goals aimed at advancing the capabilities of PINNs through the
integration of quantum computing methodologies. The first objective focused on enhancing the
performance of classical PINNs in solving PDEs within 3D geometries through the adoption of HQPINNs.
This endeavor was motivated by the recognized success of classical PINNs in 2D problem settings [10] and
the existing gap in their application to more complex 3D scenarios. The significance of this goal lies in its
potential to broaden the applicability of PINNs to a wider range of scientific and engineering problems
characterized by three-dimensional spaces.

Our second goal was to investigate the presence and feasibility of transfer learning in classical PINNs
when applied to 3D geometries. This exploration is crucial for understanding the ability of PINNs to
generalize across different geometrical configurations and physical problems, potentially enabling more
efficient re-training processes on novel problems and geometries. The overarching aim here is to enhance the
model’s versatility and reduce computational costs associated with the training of neural networks for new
tasks.

Our results in applying HQPINNs to 3D PDE problems demonstrate a notable improvement in reducing
PDE loss, marking a significant step forward in our first objective. Specifically, we observed a 21% reduction
in loss when comparing the performance of HQPINNs against their purely classical counterparts. This
quantitative improvement highlights the enhanced expressiveness and computational efficiency brought
about by the integration of quantum layers, suggesting that quantum computing elements can indeed
augment the capability of PINNs in handling the intricacies of 3D problems. However, it is important to
recognize that despite these advancements, achieving an optimal solution for 3D PDEs remains a challenging
endeavor. The observed loss reduction, while substantial, does not resolve the complexities of 3D geometrical
problem solving, indicating the need for further refinement and exploration of the HQPINN framework.

In the realm of transfer learning, our exploration yielded encouraging signs that classical PINNs possess
an inherent capability to adapt to variations in a geometrical shape, when theangle of a Y-shaped mixer was
changed. This qualitative finding is instrumental in demonstrating the potential for PINNs to be applied in
shape optimization tasks and other applications requiring flexibility across different geometrical
configurations. However, the journey towards realizing full transfer learning and generalization capabilities
in PINNs is still in its early stages. Our initial successes serve as a foundation for further research,
underscoring the necessity for continued development and investigation into the mechanisms that enable
effective transfer learning within PINNs.

In developing our HQPINNs, we have also considered recent advances in other quantum and
quantum-inspired methods for solving nonlinear equations, such as based on the matrix product states
approach [66] and variational quantum algorithms for nonlinear problems [44, 67]. While our approach
primarily focuses on handling complex boundary conditions, the integration of these quantum-inspired
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methods and variational quantum algorithms could further improve the performance and accuracy of our
proposed quantum PINN model.

Collectively, our findings contribute valuable insights into the potential of hybrid quantum neural
networks and the prospects for transfer learning in solving complex physical problems. As we continue to
push the boundaries of what is achievable with PINNs, our future efforts will focus on refining these models
to approach accurate full-scale CFD simulation in complex 3D shapes.

The plan includes exploring better architectures for the quantum PINN, investigating their impact on
expressiveness, generalizability and optimization landscape, and trying data-driven approaches. Entirely
different networks, such as neural operators [68, 69] and graph neural networks [70, 71], could also be
considered in a quantum setting and enhanced with quantum circuits.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
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