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ABSTRACT The drug design process currently requires considerable time and resources to develop each
new compound that enters the market. This work develops an application of hybrid quantum generative
models based on the integration of parameterized quantum circuits into known molecular generative ad-
versarial networks and proposes quantum cycle architectures that improve model performance and stability
during training. Through extensive experimentation on benchmark drug design datasets, quantum machine
9 (QMY9) and PubChemQC 9 (PC9), the introduced models are shown to outperform the previously achieved
scores. Most prominently, the new scores indicate an increase of up to 30% in the quantitative estimation
of druglikeness. The new hybrid quantum machine learning algorithms, as well as the achieved scores of
pharmacokinetic properties, contribute to the development of fast and accurate drug discovery processes.

INDEX TERMS Drug design, hybrid quantum neural network (HQNN), quantum generative adversarial
network (GAN), quantum machine learning (QML), variational quantum circuit (VQC).

I. INTRODUCTION

In the current pharmaceutical landscape, the drug design pro-
cess is a prolonged and costly endeavor. It typically spans
up to 15 years [1] from target identification to clinical ap-
plication, incurring expenses of approximately $1 billion for
each new drug. Machine learning has shown successful uses
through the different stages of drug development, from the
search for specific protein inhibitors [2] to the evaluation of
pharmacokinetic properties and adverse effects.

Generative adversarial networks (GANs) [3] have gained
prominence in molecular design. Their architecture is adept
at generating a vast array of potential drug candidates from
extensive molecular spaces, thereby facilitating more effi-
cient preliminary screenings. GAN models, especially when
compared to recurrent neural networks [4] and variational au-
toencoders [5], have demonstrated superiority in generating
SMILES [6] representations of compounds. A novel quan-
tum approach introduced in [7] used the deep variational au-
toencoder model trained to construct molecules as SMILES
strings. The advancements in molecule representations led
to the use of graph representations of compounds. The use
of graphs instead of SMILES, which are invariant to the
permutation of atom orders, has allowed GANSs, particularly

molecular generative adversarial network (MolGAN) [8], to
become the state-of-the-art approach in generative chemistry.

Quantum-enhanced GANSs, with their inherent probabilis-
tic nature, offer a moderate advantage over their classi-
cal counterparts by encompassing a broader and more di-
verse chemical space [9]. However, in the current Noisy
Intermediate-Scale Quantum era, the feasibility of purely
quantum algorithms is limited. Here, hybrid algorithms may
find a reasonable equilibrium between the high expressivity
of modern quantum simulators and the stability of classical
approaches.

The study of hybrid quantum neural networks (HQNNs)
represents a convergence of classical deep learning archi-
tectures with quantum machine learning (QML) algorithms
[10], [11], [12], [13], [14], specifically through parameter-
ized quantum circuits [15]. This hybrid approach harnesses
the strengths of classical and quantum computing, introduc-
ing a system capable of efficiently processing large datasets
compared to classical deep learning architectures alone [16],
[17]. HQNNSs have exhibited promising applications across
various industrial domains, including health care [18], [19],
[20], chemistry [21], [22], energy industry [23], routing [24],
and aerospace [25], as well as in image classification [26],
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[27]. While HQNNs have demonstrated efficacy in these
fields, further research is essential to explore their potential
in drug design.

This article introduces the hybrid quantum cycle MolGAN
(HQ-Cycle-MolGAN) for generating graph representations
of small molecules. By incorporating a cycle component into
the hybrid quantum MolGAN (HQ-MolGAN), where both
the generator and the cycle component are represented using
an HQNN [10], [28], we have been able to stabilize the train-
ing process for molecular samples and improve key metrics.
This includes increases of up to 30% in the quantitative esti-
mate of druglikeness (QED) score [29], a composite metric
that evaluates a molecule’s overall druglikeness based on its
chemical structure. The QED score is instrumental in assess-
ing the potential of a compound to qualify as an effective
drug, providing a quantitative measure that can guide early
drug discovery efforts. In addition, we have observed im-
provements in the synthesis accessibility (SA) score [30] and
the logP score [31]. The SA score quantifies the complexity
of synthesizing a given molecular compound, offering in-
sights into the practicality of its production at scale. A lower
SA score indicates easier synthesis, which is favorable for
drug development. The LogP score measures a compound’s
solubility and permeability, indicating its balance between
hydrophilicity (water solubility) and lipophilicity (fat solu-
bility). This balance is crucial for a drug’s absorption, distri-
bution, metabolism, and excretion properties, impacting its
effectiveness and safety. Overall, the proposed hybrid mod-
els show an advantage over their nearest competitors among
quantum models in terms of pharmacokinetic properties, in-
cluding QED score, SA score, and logP score.

This work contributes insights into the potential of QML
for small molecule generation, emphasizing the benefits of
hybrid quantum—classical approaches in drug design. The
results underscore the significance of employing quantum-
enhanced models to achieve improved performance across
essential molecular optimization metrics.

Il. PRELIMINARIES

In this study, we introduce several models for small molecule
generation. First, we present a refined classical MolGAN
with a halved parameter count, drawing inspiration from
the state-of-the-art classical MolGAN architecture [8]. Sec-
ond, in Section II-B, we present an HQ-MolGAN, fusing
classical and quantum computing approaches for enhanced
capabilities. Notably, we propose the novel classical cycle
MolGAN, incorporating a multiparameter reward function
based on reinforcement learning principles, inspired by the
state-of-the-art cycle MolGAN [32]. In addition, in Sec-
tion II-C, we introduce the innovative HQ-Cycle-MolGAN.
Through rigorous experimentation on the quantum machine
9 (QM9) and PubChemQC 9 (PC9) datasets, described in
Section II-A, our results demonstrate that models trained on
PC9 exhibit higher LogP scores than their QM9 counterparts.
Furthermore, the hybrid quantum models showcase better
performance, achieving the highest QED, SA, and LogP
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metrics scores. Remarkably, our hybrid quantum model out-
performs a similar quantum generative adversarial network
hybrid generator moderately reduced (QGAN-HG MR) hy-
brid model from [9] and quantum molecular generative ad-
versarial network (QuMolGAN) from [33], emphasizing the
efficacy of our proposed approaches in small molecule gen-
eration. We summarize our conclusions and outline future
research directions in Section I'V.

A. DATASET

This study employed two datasets for model training: QM9
and PC9. The QM9 dataset [34], [35], a well-established
benchmark in small molecule drug design since 2012, com-
prises approximately 134 000 neutral molecules, each with
no more than nine atoms (C, O, N, F) apart from hydrogen.
Its comprehensive and diverse chemical space makes it par-
ticularly relevant for this field.

The second dataset, PC9, is a subset of the extensive Pub-
Chem database, containing around 99 000 molecules [36]. A
notable distinction between QM9 and PC9 is that the latter
includes not only neutral molecules but also those with a mul-
tiplicity greater than one. While PC9 was initially proposed
as a replacement for the QM9 dataset, its practical usage
alongside QM9 has demonstrated benefits in generating a
more diverse set of molecular structures.

Fig. 1 shows that the mean QED and LogP scores for
molecules in the PC9 dataset are higher than those in QM9,
while the mean score for SA is lower. Intuitively, this sug-
gests that models trained on the PC9 dataset might be in-
clined to generate samples with higher values in these two
key metrics than similar models trained on QM9. However,
as detailed in Section III, this is not always the case.

It is important to note that during training, normalized
values of logP, natural product likeness (NP), and SA scores
were evaluated and optimized.

B. HYBRID QUANTUM MOLGAN

In this section, we introduce the HQ-MolGAN, which is
based on the classical MolGAN architecture [8]. As depicted
in the shaded green rectangle of Fig. 2(a), the architecture of
HQ-MOolGAN is comprised of three primary components: the
generator (G), the discriminator (D), and the reward com-
ponent (R). This model operates on the principles of the
Wasserstein GAN [37], wherein the generator endeavors to
synthesize molecular graph representations indistinguishable
from authentic ones, thereby “deceiving” the discriminator.
The training regimen of HQ-MolGAN encapsulates a min—
max optimization game, wherein the generator and the dis-
criminator engage in a continuous adaptive process to refine
the generative quality of molecular representations

mGin max Ey~ Py [DO)] — Ezp,[D(G(2))]

—Eyp, [ (1500, = 1)7].

gradient penalty
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FIGURE 1. Histograms of the distribution of values of QED, SA, and LogP scores in QM9 and PC9 datasets. The mean QED and LogP scores for molecules
in the PC9 dataset are greater than those in QM9, while the mean score for SA is lower.

The reward component in our HQ-MolGAN architecture
functions as a sophisticated reinforcement learning objec-
tive, tasked with evaluating the generator’s output based on
several chemical property metrics. This evaluation extends
beyond the conventional metrics of QED, LogP, and SA
scores. It incorporates a comprehensive assessment of “va-
lidity,” quantified as the ratio of valid molecular samples
to the total number of generated samples. Furthermore, it
considers “novelty,” defined by the proportion of generated
valid samples not present in the training dataset. In addi-
tion, the reward component assesses “diversity,” a measure
of the variance in the chemical structures of the generated
molecules, and the NP score, as delineated in [38]. These
multifaceted evaluation criteria enable a more nuanced and
thorough assessment of the generator’s performance, align-
ing the generated molecules more closely with desired chem-
ical characteristics.

In the architecture of HQ-MolGAN, a pivotal role is
played by the variational quantum circuit (VQC), which is
integrated as the initial layer in MolGAN’s generator. The
VQC operates by encoding a noise vector into N qubits.
Subsequent to the application of rotation and entanglement
gates, the VQC outputs a probability distribution vector, de-
noted as [p(0), ..., p(2Y — 1)], where each element repre-
sents the probability of a corresponding quantum state. This
vector, with a dimensionality of N undergoes a truncation
process where only the first 2V ~Nancilla elements are retained.
The truncated vector is then fed into the classical fully con-
nected layers, which constitute the remaining component of
HQ-MolGAN’s generator.

In our experimental analysis, two distinct configurations
of the VQC were evaluated: the vanilla variational repeti-
tive quantum (VVRQ) layer [39] and the exponential fourier
quantum (EFQ) layer [40]. These configurations offer dif-
ferent approaches to quantum state transformation, thus pro-
viding a comparative understanding of their efficacy in the
context of molecule generation.
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The operational mechanism of the VVRQ layer within our
HQ-MolGAN framework [see Fig. 2(a)] involves encoding
the noise vector directly onto the qubits in a single step
using angle embedding [41] [green rectangles in Fig. 2(a)].
Following this initialization, the VVRQ layer implements
several variational layers, which consist of a sequence of Rot
(rotation) gates [blue rectangles in Fig. 2(a)]

Rot(6, 62, 03) = Ry(6) - Rz(62) - Ry(63)

- (282

(w0
o= ( o)

0
and controlled NOT (CNOT) gates
1 00O
CNOT — 01 00
0 0 0 1
0010

Originally, this approach was proposed in [42] for image
generation, but it can be applied to any generative task. The
CNOT gates are applied between sequentially adjacent qubits,
i.e., between qubit i and qubit i 4 1, thereby facilitating quan-
tum entanglement and information propagation across the
qubit array.

This process is iteratively repeated for three variational
layers, ensuring a thorough and complex manipulation of
the quantum state. The final step in the VVRQ process in-
volves measuring the probability distribution of the quantum
states of the qubits. These measurements yield a probability
vector that encapsulates the resultant quantum state post-
entanglement and rotation, reflecting the encoded informa-
tion from the initial noise vector.

In the EFQ layer, the data encoding process is distinctly
characterized by a dual-phase approach. Initially, the input
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FIGURE 2. (a) Structure of HQ-Cycle-MolIGAN: generator (G), discriminator (D), cycle component (C). The part highlighted in green is the same as
HQ-MOolGAN. (b) Illustration of the work of the cycle components. Suppose that Z is a space of normally distributed noise vectors, and Y is a chemical
space of datasets. The generator maps Z to some chemical space Y’, and after the cycle component restores vector G(Z) back to noise. The accuracy of
these restorations is then optimized. (c) Quantum depth-infused neural network layer used as the HQ-Cycle component.

data are encoded onto the qubits using angle embedding. This dual-encoding scheme, particularly with the ampli-
This is followed by several variational layers and a second fied rotational amplitude in the second phase, is designed to
encoding phase, in which the amplitude of the rotational enhance the expressive power of the quantum circuit [43].
gates is systematically increased to double its initial value. By manipulating the amplitude of rotations in this manner,
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the EFQ layer could potentially induce a more diverse and
complex quantum state space.

C. HYBRID QUANTUM CYCLE MOLGAN

The Cycle-MolGAN model introduces an innovative “cycle
component” (C) [see Fig. 2(b)] to the established MolGAN
architecture. This component is ingeniously designed to re-
verse the molecule generation process. Specifically, it con-
verts the generated molecular samples back into their origi-
nating noise vectors and assesses the accuracy of this reverse
conversion. This approach, as proposed in [32] and [44], has
been identified as particularly advantageous in the realm of
molecular optimization tasks. It contributes significantly to
the stability of the training performance and is instrumental
in suppressing the training of the nonisomorphic generator
compounds within the hybrid-MolGAN framework, espe-
cially pertinent in generating small molecules.

Practically implemented, the cycle component takes the
form of a multilayer perceptron (MLP) model. This model
effectively combines the adjacency matrix and the feature
matrix of each generated molecular sample into a singular
unified tensor. Following this integration, the cycle compo-
nent proceeds to “mirror” the layers of the generator, albeit
in reverse order. This mirroring process is a critical step as
it compresses the expanded dimensions of the combined ten-
sor, specifically batch_size x 405 from the adjacency matrix
and batch_size x 45 from the feature matrix, down to a more
manageable size of batch_size x 8. This reduction is pivotal
for effectively re-encoding the complex molecular informa-
tion back into the concise form of noise vectors.

In the development of the hybrid cycle component within
the Cycle-MolGAN framework, we adhere to the classical
design but with a crucial modification in the final layer.
This layer is replaced by a quantum depth-infused neural
network layer, as described in [45]. This quantum depth-
infused layer undertakes the task of encoding a vector of size
batch_size x 64 into eight qubits through a series of eight
repetitive encoding layers [blue rectangles in Fig. 2(c)].

To optimize the performance of the generator within this
architecture, we employ a combined loss function, articu-
lated as follows:

L(0) = A - L(O)waan + (1 = 1) - L(O)cycle + ¥ L(O)Reward
y, A e[0,1].

This loss function integrates the Wasserstein GAN loss
(L(0)wcaN), the cycle loss (L(6)cycle), and the reward loss
(L(6)Rewara)- The coefficients y and A regulate the relative
influence of each component in the overall loss calculation.
In our experiments, we set A to 0.5, thereby assigning equal
importance to both cycles of transformation (from noise vec-

tor Z to generated sample Y’, and back from Y’ to Z), as
illustrated in Fig. 2(b).

IIl. RESULTS

The models in this study were developed in Python3, uti-
lizing the PyTorch framework [46] and PennyLane [47] for
the quantum computation. The simulations described further
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were performed on classical simulators emulating quantum
hardware. To evaluate the chemical properties of the synthe-
sized compounds, we utilized the RDKit library. Our compu-
tational experiments leveraged GPU hardware, specifically
the Tesla V100 and RTX 3060 GPUs, to facilitate efficient
processing.

For testing the potential performance on quantum hard-
ware, a Qiskit [48] implementation of the VQC was used on
the simulator of the IBM Brisbane device [49], [50].

For the classical MolGAN models, the generator’s archi-
tecture was scaled down by reducing the number of param-
eters in each layer by half, resulting in a total of 157570
parameters in the generator. The classical models, including
both the standard MolGAN and Cycle-MolGAN, underwent
a training regime of 200 000 iterations with a batch size of
ten samples. In contrast, the hybrid quantum models were
subjected to a shorter training duration of 50 000 iterations.
The validation set size was limited, containing either 100
samples when training on a single dataset or 250 samples
in cases where multiple datasets were employed. In both the
EFQ and VVRQ models, the number of ancilla qubits is
equal to 2.

The experimental investigation was conducted in four
distinct stages.

1) First stage (see Section I1I-A): This phase focused on
evaluating the performance differences between the
VVRQ and EFQ layers when integrated into the hybrid
generator in HQ-MolGAN.

2) Second stage (see Section III-B): The objective was to
assess the impact of the classical cycle component on
the performance of MolGAN and HQ-MolGAN.

3) Third stage (see Section I1I-C): This stage involved an
analysis of the hybrid-cycle component, including a
comparative study against the classical cycle compo-
nent.

4) Fourth stage (see Section I1I-D): This phase included a
setup and analysis of HQ-MolGAN’s performance test
after forward pass on the classical simulator of the IBM
Brisbane quantum device.

These four stages are described in detail in Sections IT1I-A—
I-C.

A. HYBRID QUANTUM MOLGAN
We start the investigation into the efficacy of the hybrid gen-
erator within the MolGAN framework with a comparative
analysis focusing on the chemical properties of the generated
molecular samples. Specifically, this analysis evaluates the
logP and QED scores. By contrasting the logP and QED
scores yielded by the molecules generated from each model,
we aim to quantify and elucidate the impact of the hybrid
generator’s integration on the model’s performance in gener-
ating chemically viable and optimally structured molecules.
Fig. 3 illustrates a notable distinction in the behavior of
the classical MolGAN and the HQ-MolGAN in terms of
their generated molecular score distributions. The classical
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FIGURE 3. Chart of (a) QED, (b) LogP, and (c) SA scores during the training of classical MolGAN and hybrid MolGAN. It can be seen that while MolGAN
limits its scores to a narrow beam of values even after 50 000 iterations, hybrid MolGAN presents a wider range of compounds, covering greater scores

of key metrics.

TABLE 1. MolGAN and HQ-MoIGAN

Model Unique (%)  Valid (%) Diversity  Druglikeliness  Synthesizability — Solubility
MolGAN (QM9) 63.0 1.1 0.98 0.47 0.64 0.52
MolGAN (PC9) 39.9 14.6 0.96 0.51 0.38 0.80
MolGAN (Both Datasets) 46.2 3.7 0.99 0.53 0.42 0.68
HQ-MolGAN-VVRQ (QM9) 71.1 14.3 0.97 0.53 0.84 0.61
HQ-MolGAN-VVRQ (PC9) 65.7 3.2 0.99 0.51 0.40 0.66
HQ-MolGAN-VVRQ (Both Datasets)  68.8 11.5 0.98 0.52 0.63 0.75
HQ-MolGAN-EFQ (QM9) 45.8 5.4 0.99 0.50 0.37 0.79
HQ-MolGAN-EFQ (PC9) 53.8 3.9 0.97 0.62 0.39 0.75
HQ-MolGAN-EFQ (Both Datasets) 39.4 12.9 0.97 0.53 0.49 0.84
QGAN-HG MR [9] 54.0 44.0 1.00 0.51 0.11 0.49
P2-QGAN-HG MR [9] 41.0 52.0 1.00 0.49 0.12 0.62
QuMOolGAN [33] 5.4 42.94 1.00 0.57 0.76 0.44

The bold values are the maximum values.

MolGAN model demonstrates a tendency to produce scores
that converge toward a relatively narrow range. In contrast,
the molecular samples generated by HQ-MolGAN exhibit
an oscillatory behavior in their score values. This variability
in the HQ-MolGAN’s scores can significantly influence the
model’s training dynamics, particularly due to the reward
component, which calculates the product of these metric
values.

A potential explanation for the discontinuous score trends
observed in the HQ-MolGAN could be attributed to its
limited validation set size. Nevertheless, the HQ-MolGAN
can generate molecular samples with competitive scores
in terms of druglikeness, synthesizability, and solubil-
ity, as depicted in Fig. 4(a). As shown in Table 1, the
HQ-MolGAN-VVRQ model trained on the QM9 dataset
achieves a LogP score of 0.84, the HQ-MolGAN-EFQ model
trained on the PC9 dataset results in a QED score of 0.62,
and the HQ-MolGAN-EFQ model trained on both datasets
attains an SA score of 0.84.

The HQ-MolGAN-VVRQ model exhibits a propensity
for generating samples with higher SA scores. In contrast,
the HQ-MolGAN-EFQ model demonstrates superior perfor-
mance in achieving greater QED and LogP scores.

Furthermore, a dataset-dependent variance in performance
is observed. Models trained on the PC9 dataset consistently
reach higher LogP scores compared with those trained on the
2500514

QMO dataset. This trend aligns with the inherent distribution
of scores within these datasets, as illustrated in Fig. 1. How-
ever, such a correlation does not extend to the QED scores,
where no discernible pattern is evident based on the choice
of training dataset.

These findings underscore the nuanced impact of model
configuration and training dataset on the performance of
HQ-MolGAN in generating molecular samples with desired
chemical properties. They highlight the need for careful con-
sideration of both the model architecture and the dataset
characteristics in optimizing the performance of molecule
generation models.

During our experiments, we observed a notable limita-
tion of the hybrid models, characterized by the generator’s
tendency to gravitate toward a “high entropy state.” This
phenomenon is illustrated in Fig. 4(b). In this state, the
generator predominantly produces molecular structures that
are either bare unbound atoms or a collection of disconnected
small molecules. Intriguingly, despite their simplistic and
fragmented nature, these structures are often assigned high
scores in terms of LogP and SA by the RDKit library within
the reward component. This paradoxical scoring poses a
challenge to the model’s reliability in generating chemically
meaningful and complex molecules.

This observation indicates a critical issue in the genera-
tor’s mapping process. Essentially, various noise samples Z

VOLUME 5, 2024
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FIGURE 4. (a) Samples generated by HQ-MolGAN-VVRQ trained on QM9. (b) “High entropy state”: HQ-MolGAN-VVRQ generated inappropriate samples
and RDKit rewarded them with an average metric of LogP « 0.9. (c) Samples generated by HQ-Cycle-MolGAN-VVRQ trained on both datasets. (d)

Samples generated by MolGAN with HQ-Cycle trained on both datasets.

are mapped to a limited and similar region in the chemical
space Y’, resulting in repetitive and high-entropy molecular
samples. Such a mapping significantly diminishes the gen-
erator’s expressivity, constraining its ability to generate a
diverse range of molecular structures.

To ensure that the models generate unique and varied
molecular samples, it is imperative to establish a one-to-one
correspondence between different noise vectors and distinct
molecular structures. In other words, the model must possess
isomorphic properties to map distinct noise vectors to chem-
ically diverse molecular samples. To achieve this objective,
the integration of a cycle component is proposed. The cycle
component is designed to reinforce the isomorphic nature

VOLUME 5, 2024

of the model by facilitating a more diverse and accurate
mapping from noise vectors to molecular samples and vice
versa, thereby enhancing the model’s capability to generate
a wider array of unique molecular structures.

B. HYBRID QUANTUM CYCLE MOLGAN

Prior to assessing the effect of the cycle component on the
training of HQ-MolGAN, it is essential to first examine its
impact on the conventional MolGAN framework. As indi-
cated in Fig. 5(a), the incorporation of the cycle component
into MolGAN (termed Cycle-MolGAN) results in a more
stable training process compared to the ordinary MolGAN
model. This stability significantly enhances the quality of the
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FIGURE 5. (a)—(d) present a comparison of the combined losses during training on the QM9 dataset. (a) MolGAN and Cycle-MolGAN. Cycle-MolGAN has
a more stable training process compared to the MolGAN. (b) HQ-Cycle-MolGAN-EFQ and HQ-MolGAN-VVRQ. (c) MolGAN an HQ-Cycle-Component
MoIGAN. (d) HQ-Cycle-MolGAN-EFQ versus Hybrid-MolGAN-EFQ. No significant impact of the Cycle component on the loss curve is observed. (e) and (f)
present charts for the IBM Brisbane execution. (e) Graph of the relative errors of the simulators’ probability matrices with respect to the number of
shots. (f) Comparison of the probabilities generated by the noisy and ideal simulators using 2 x 10° shots.

generated molecular samples, as reflected in their improved
uniqueness scores (see Tables 1 and 2). Furthermore, the
cycle component contributes to the generation of more
complex and “bounded” molecular structures, indicating a
higher degree of chemical realism [see Fig. 4(c) and (d)].

In the context of HQ-MolGAN, while the integration
of the cycle component does not markedly alter the loss
curve, as depicted in Fig. 5(b), its influence is evident in the
improved key metric scores of the final HQ-Cycle-MolGAN
models. Whether trained on the PC9 dataset or a combination
of datasets, the HQ-Cycle-MolGAN demonstrates superior
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performance in key metrics, as shown in Table 2. The
stabilizing properties of the cycle component aid the model
in consistently generating “bounded” molecular samples.
Notably, both the VVRQ and EFQ variants of HQ-MolGAN
achieve significant scores in terms of LogP (0.93 and 0.94)
and QED.

In addition, an analysis of Tables 1 and 2 reveals that
models equipped with the cycle component are capable of
producing a greater number of unique samples. This finding
aligns with the intended objective of the cycle component,
which is to navigate through the “high entropy state” and
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TABLE 2. MolGAN and HQ-MolGAN With Classic Cycle Component

Model Unique (%)  Valid (%) Diversity  Druglikeliness  Synthesizability ~ Solubility
Cycle-MolGAN (QM9) 86.3 0.7 1.00 0.47 0.37 0.46
Cycle-MolGAN (PC9) 67.8 32 0.98 0.48 0.27 0.52
Cycle-MolGAN (Both Datasets) 68.4 4.2 0.95 0.52 0.48 0.69
HQ-Cycle-MolGAN-VVRQ (QM9) 64.2 43 0.97 0.54 0.38 0.92
HQ-Cycle-MolGAN-VVRQ (PC9) 73.8 14.5 0.99 0.51 0.50 0.93
HQ-Cycle-MolGAN-VVRQ (Both Datasets) ~ 86.7 6.8 0.98 0.58 0.48 0.75
HQ-Cycle-MolGAN-EFQ (QM9) 66.9 5.8 0.98 0.55 0.33 0.69
HQ-Cycle-MolGAN-EFQ (PC9) 81.2 22.1 0.96 0.54 0.40 0.94
HQ-Cycle-MolGAN-EFQ (Both Datasets) 64.1 7.5 0.98 0.53 0.35 0.66
The bold values are the maximum values.
TABLE 3. MolGAN and HQ-MolGAN With HQ-Cycle Component

Model Unique (%)  Valid (%) Diversity  Druglikeliness  Synthesizability ~ Solubility
Cycle-MolGAN (QM9) 92.4 2.7 0.99 0.47 0.35 0.64
Cycle-MolGAN (PC9) 93.2 5.1 0.97 0.46 0.28 0.65
Cycle-MolGAN (Both Datasets) 93.9 6.52 0.99 0.49 0.25 0.78
HQ-Cycle-MolGAN-VVRQ (QM9) 60.4 8.7 0.94 0.53 0.38 0.61
HQ-Cycle-MolGAN-VVRQ (PC9) 67.8 9.1 0.94 0.53 0.50 0.93
HQ-Cycle-MolGAN-VVRQ (Both Datasets)  65.5 15.0 0.98 0.51 0.35 0.95
HQ-Cycle-MolGAN-EFQ (QM9) 76.8 4.1 0.98 0.51 0.42 0.63
HQ-Cycle-MolGAN-EFQ (PC9) 88.8 11.0 0.98 0.50 0.35 0.69
HQ-Cycle-MolGAN-EFQ (Both Datasets) 4.7 9.3 0.96 0.52 0.49 0.73

The bold values are the maximum values.

enhance the diversity and uniqueness of the molecular
samples generated by the model. The addition of cycle com-
ponents provides a more stable (even smoother) training pro-
cess for classical MolGAN. In terms of HQ-MolGAN, it
rapidly increases its isomorphic properties that significantly
help to get through a “high entropy state” during training.
This increase in objectivity can be seen in the increase in
uniqueness scores of cycle models.

C. HYBRID QUANTUM CYCLE MOLGAN

In the third stage of our experimental series, we focused
on evaluating the impact of the HQ-Cycle component
on both the classical MolGAN and the HQ-MolGAN
architectures. In our simulations, the VVRQ generator uses
a quantum circuit with 3 x 8 x 3 parameters. In the case of
the quasi-diffusion magnetic resonance imaging (QDI) layer
in the HQ-Cycle component, the quantum circuit has 8 x 8
parameters.

Fig. 5(c) and (d) presents a comparative analysis of the
generator losses between MolGAN and HQ-MolGAN mod-
els with and without the HQ-Cycle component. According to
the data presented in Table 3, the incorporation of the HQ-
Cycle component does not result in significant improvements
in most of the desired metrics, except for a notable LogP
score of 0.95 achieved by the HQ-Cycle-MolGAN-VVRQ
model trained on both the datasets.

This absence of a marked enhancement in performance
metrics for models incorporating the HQ-Cycle component,
as compared to their counterparts without it, could poten-
tially be attributed to an insufficient number of training it-
erations. This hypothesis is supported by the observations
from Fig. 5(c), where the training losses of HQ-MolGAN
and HQ-MolGAN with the HQ-Cycle component exhibit
minimal divergence, suggesting that extended training might
be necessary for realizing the full potential of the HQ-Cycle
component.
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Interestingly, the introduction of the HQ-Cycle component
appears to significantly elevate the “unique” score of the
models, surpassing even that achieved with the standard cy-
cle component. This outcome validates our initial hypothesis
that a more precise generation of unique molecular samples
is feasible, even with complex models, such as HQ-Cycle-
MolGAN-EFQ or HQ-Cycle-MolGAN-VVRQ. This finding
underscores the effectiveness of the HQ-Cycle component
in enhancing the diversity and uniqueness of the generated
molecular structures.

D. EXECUTION ON SIMULATORS OF NOISY QUANTUM
DEVICES

In the last section of our numerical experiments, we explore
the potential of executing the HQ-MolGAN-VVRQ model
on quantum devices. For that exploration, we generated
molecular samples using two IBM simulators: the “noisy
simulator” of the IBM Brisbane quantum computer and the
“ideal simulator” of the noiseless IBM Brisbane quantum
computer [49], [50].

To perform the numerical experiments, we took the gener-
ator of the HQ-MolGAN-VVRQ model and separated it into
two parts: VQC and MLP. In the experiments, we executed
the VQC part on the simulator of the noisy and noiseless
quantum hardware and fed the results to MLP executed on
classical hardware. In the noisy simulation, we performed
quantum operations on eight noisy qubits with the best fi-
delities out of 127 available on the IBM Brisbane quantum
computer. In the ideal simulation, we performed the same
VQC with the same initial Gaussian-distributed vector on an
ideal simulator.

The comparison between noisy and ideal simulations is
shown in Fig. 5(e), where relative losses of noisy and ideal
simulators with respect to the number of given shots are
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TABLE 4. HQ-MolGAN-VVRQ Forward Pass on the Noisy (IBM Brisbane) and Ideal (Qiskit) Simulators Using 2 x 10> Shots Budget

Model Unique (%)  Valid (%) Diversity  Druglikeliness ~ Synthesizability ~ Solubility
Noisy HQ-MolGAN-VVRQ (QM9)  80.0 6.52 0.97 0.44 0.23 0.76
Ideal HQ-MolGAN-VVRQ (QM9) 80.0 6.51 0.97 0.44 0.23 0.75

The bold values are the maximum values.

shown. The relative error is estimated as

| 325 [Paim i(N) — Pigear i(+00)]|
Err(N) = 55E
Zn:l Pigeal i(+00)

where Pigeq1(+00) is the matrix of probabilities generated on
the ideal simulator after a large number of iterations (N —
~+00) and Py, (V) is the matrix of probabilities generated on
the specific simulator (either ideal or noisy) after N shots.

The relative error of the ideal simulator approaches zero as
the number of shots grows, as shot noise is the only source
of error. For the noisy simulator, the relative error hits a limit
specific to the noise model of the quantum device. This sys-
tematic error of the device has an impact on the probability
values given by the circuit, leading to slightly different initial
states of the vector [see Fig. 5(f)], which is given to the MLP
layer in the course of generation.

For the generation of molecular samples, we created 1000
vectors [x, .., xgl, x; ~ N(0, 1), forward passed them on
both simulators, postprocessed them, and then used them in
the MLP layer. After that, the generated molecular graph
properties were evaluated. As seen in Table 4, molecular
graphs generated on the noisy simulator have slightly greater
validity and solubility. This may be because, on the one hand,
the probability vectors obtained on the noisy simulator do not
differ too much from the ideal one. On the other hand, the
MLP layer can play a role as an error correction algorithm.

IV. DISCUSSION

In this article, we propose a novel approach leveraging QML
for small molecule generation. Our chosen task of small
molecule generation serves as a benchmark for the perfor-
mance of hybrid QML models.

To enhance the classical MolGAN, we introduced two
solutions: the incorporation of VQCs as the initial layer of
the generator and the utilization of a cycle component to
restore the original data from the graph representation of the
generated molecule.

Our empirical results substantiate the merit of diversify-
ing training datasets, not limiting to the QM9 dataset alone
but also incorporating the PC9 dataset. Notably, the HQ-
MolGAN model, with their generator’s layers scaled down
by half and trained for four times fewer iterations, has out-
performed the classical MolGAN model [8] and its hybrid
quantum analogues [9], [33] across key chemical metrics:
QED, logP, SA, and uniqueness. The HQ-MolGAN model
was also tested for potential execution on quantum comput-
ers. By using the noisy and ideal simulators of an IBM quan-
tum computer, we observed that the HQ-MolGAN model is
resilient to noise: the achieved scores of the noisy simulation
are shown to be similar to the ideal noise-free simulation.
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The introduction of the cycle component to HQ-MolGAN,
and especially its hybrid quantum variant, marks an advance
in the training of hybrid quantum models. These models not
only enhance the desired uniqueness score but also effec-
tively mitigate the occurrence of the “high entropy state,”
a notable challenge in molecular generation tasks. Conse-
quently, these models hold substantial promise for applica-
tions in the domain of small drug compound design, both for
commercial and scientific purposes within pharmacology.

This work contributes insights into the potential of QML
for small molecule generation, emphasizing the benefits of
hybrid quantum—classical approaches in drug design. The
results underscore the significance of employing quantum-
enhanced models to achieve improved performance across
essential molecular optimization metrics.

Looking ahead, we see a potential for hybrid QML models
to further advance the field of molecule generation using hy-
brid quantum models. We plan to delve deeper into refining
the model architecture, particularly focusing on optimizing
the balance between the quantum and classical components.
This involves experimenting with different configurations
and parameters to enhance the overall efficiency and accu-
racy of the models.

Another critical avenue we intend to pursue is the ex-
pansion of our training datasets. By incorporating a broader
range of chemical compounds and molecular structures, we
aim to increase the diversity and representativeness of our
models. This expansion is expected to improve the models’
generalization capabilities and their applicability. Through
these focused research efforts, we aspire to contribute signif-
icantly to the advancement of hybrid quantum computing in
drug discovery, ultimately aiding in the development of more
effective and innovative therapeutic solutions.

APPENDIX A

QUANTUM CIRCUIT ANALYSIS

In this appendix, we analyze the quantum circuits em-
ployed in the HQ-Cycle-MolGAN framework, specifically
the VVRQ and the QDI layers. We assess these circuits using
several metrics:

1) ZX-calculus circuit reducibility;
2) Fisher information degeneracy;

A. ZX-CALCULUS

ZX-calculus serves as a graphical language capable of de-
picting a quantum circuit through diagrams consisting of
“spider”—nodes interconnected by edges. These ZX dia-
grams can be simplified [51] and minimized using the lan-
guage’s graphical rewriting rules [52], which are grounded
in the fundamentals of quantum operations. By simplifying
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FIGURE 6. (a) VVRQ layer with original parameters. (b) VVRQ layer without redundant parameters. (c) QDI layer with original parameters. (d) QDI layer

without redundant parameters.

these diagrams, we can derive a more efficient circuit config-
uration. Moreover, ZX-calculus offers a metric for evaluating
circuit efficiency by comparing the number of parameters in
the simplified diagram against the initial number of parame-
ters. A reduction in redundant parameters indicates enhanced
circuit performance. A circuit deemed unable to be optimized
in this manner is classified as ZX-irreducible.

The key adjustments to the circuit shown in Fig. 6(a) and
(b) consist of the rearrangement of certain weights after their
reduction. During the optimization phase, 139 out of 150
parameters (approximately 93%) were preserved, illustrating
the circuit’s significant degree of optimization. As illustrated
in Fig. 6(c) and (d), for QDI, the ZX-calculus algorithm
merely adjusted some of the weights following their reduc-
tion. Throughout the optimization process, 269 out of 272
parameters (about 99%) were maintained, indicating that the
circuit is highly optimized and yields almost perfect out-
comes.

By using the ZX-calculus algorithm, it was revealed that
both VVRQ and QDI perform very well and have close to
no redundant parameters. However, other metrics should be
applied to obtain a more precise analysis.

B. FISHER INFORMATION
A supervised machine learning task can be described as the
creation of a hypothesis model hy(X) based on a labeled
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dataset (x,y) € X x Y to provide an approximation of the
distribution, f(x), of the data in nature. Using a subset of
S labeled data points from this distribution, we optimize
our hypothesis model to provide high-accuracy modeling of
f(X). For this, we maximize the probability of acquiring the
associated label y from the model with parameters 6 and data
points x. The needed conditional probability can be written as
P(y|x, 0). Taking into account the uniform distribution over
X, the joint probability P(y, x|6) is used for better accuracy,
and its distribution can be calculated for any value of 6 for a
data points x;. Thus, we represent the joint probability as an
N-dimensional manifold with N as the number of trainable
parameters N = |0|. The Fisher information matrix (FIM)
F(0) [53], [54] is a metric over this manifold

F(0) = Eyy,y,) [ Vo log(P)Vg log(P)] . ey

The next step is to diagonalize this metric to get a locally
Euclidean tangential basis, where the diagonal values are the
square gradient of our joint probability in this basis. These
are the eigenvalues of the Fisher matrix. This is very impor-
tant to detect and prevent the barren plateau problem, which
involves vanishing gradients with a high number of qubits in
quantum neural networks (QNNG).

As shown in [55], their expectation values become zero,
and their variance decreases exponentially with a growing
number of qubits. This can be seen if the gradients mostly
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FIGURE 7. (a) Normalized histogram of (left) the VVRQ and (right) QDI Fisher eigenspectrum. For VVRQ, all three layers have the first four parameters
contributing the most impact (with the third layer adding extra frequency to the first parameter). This circuit is moderately expressive. For QDI, the
majority of parameters achieved very high frequencies, which indicates excellent trainability. (b) and (c) Average Fisher matrices for (left) VVRQ and
(right) QDLI. For VVRQ, the diagonal elements show that the circuit distributes the gradients to all trainable parameters with no evident single-parameter
dominance (only a slight gradient shift toward the latter parameters for the deeper layers). For QDI, the diagonal elements show that the circuit
distributes the gradients to all trainable parameters with no single-parameter dominance and almost no nondiagonal element, indicating high
trainability. (d) FIM rank for VVRQ (left, 3/5 layers used) and QDI (right, 1/5 layers used) illustrates the circuit’s limit of overparameterization. For VVRQ,
the circuit is not overparameterized, and the addition of the second layer more than doubled the rank (from 16 to 38). The third layer adds the same
amount, so it is not necessary to increase further. For QDI, taking into account excellent eigenspectrum performance and the usual increase from the
first to the second layer (from 72 to 144, doubled, unlike the VVRQ), it is unnecessary to add new layers.
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degenerate near zero, which means that many parameters do
not participate in training at all. Therefore, calculating the
eigenvalue spectrum of Fisher matrices for many realizations
of 6 helps investigate the trainability and robustness of the
QNN against barren plateaus. A more highly trainable neural
network would have less eigenvalue degeneracy.

The FIM can be calculated for the specific hyperparam-
eters of our circuit. Using a method from [53], we create
a Gaussian dataset x ~ N (i = 0, 02 = 1). Then, the joint
probability can be found by overlapping the computed state
and the state of our quantum layer

P(y, x|0) = (y|¥ (6, x)) 2

where y is the output state. By averaging over all x and y, we
can calculate the Fisher information for any given 6.

As a result, we can see in Fig. 7(a) that both circuits
have at least half of their parameters significantly impacting
the result. The QDI shows especially good results with four
highly impactful parameters and two moderately impactful
parameters. Fig. 7(b) shows the average Fisher matrices with
no redundant elements on the diagonal. This shows that all
the parameters are used in training, which leads to high
trainability.

Larocca et al. [56] stated that some QNNs may show low-
ered parameter efficiency due to overparameterization. This
was calculated by finding that, at some point, parameter addi-
tion leaves the rank of the FIM rank unchanged. This happens
when the circuit starts to become saturated. After that, there
is no increase in expressivity, and there can be a risk of over-
parameterization. As one can see in Fig. 7(d), the addition
of new layers does not show any overparameterization on
this scale. Hence, the increase in rank with additional layers
(and other metrics) can determine the necessity of structure
change. As the previous analysis showed, VVRQ performs
quite well, which may indicate that a more complex circuit is
not needed. At least two layers are required since the addition
of the second one changed the rank from 16 to 38, while the
expected scenario would be an increase of the same amount
as the first one (to 32). It shows the underdevelopment of
the first layer that is fixed by the addition of a new one. For
QDI, the circuit is already optimized enough and does not
show any underdevelopment for the first layer. Thus, the need
for the addition of new layers can be determined by how
much the rank increases, complemented by other methods
(such as the Fisher eigenspectrum analysis).

APPENDIX B

HYBRID QUANTUM GENERATOR OSCILLATORY
BEHAVIOR

HQ-MolGAN models have shown oscillatory behavior in
terms of chemical metrics during training (see Fig. 3). The
reason for this phenomenon may lie in the breakdown of the
interplay between the hybrid quantum generator and the clas-
sical discriminator. To investigate this possibility, we provide
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FIGURE 8. Loss curve of the discriminator for the classical MolGAN and
the HQ-MolGAN-VVRQ.

a loss chart of the discriminator component during the train-
ing of the classical MolGAN and the HQ-MolGAN-VVRQ
(PCY).

Fig. 8 shows that the discriminator competing with the hy-
brid quantum generator does not show any significant change
compared to the classical MolGAN generator. Also, neither
chart shows any significant increase after 15000 iterations,
which means that MolGAN’s generative expressiveness con-
verges to a narrow beam of values due to the generator’s
properties and not the discriminator’s.
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