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Abstract—Earth imaging satellites are a crucial part of our
everyday lives that enable global tracking of industrial activities.
Use cases span many applications, from weather forecasting to
digital maps, carbon footprint tracking, and vegetation monitoring.
However, there are limitations; satellites are difficult to manufac-
ture, expensive to maintain, and tricky to launch into orbit. There-
fore, satellites must be employed efficiently. This poses a challenge
known as the satellite mission planning problem, which could be
computationally prohibitive to solve on large scales. However, close-
to-optimal algorithms, such as greedy reinforcement learning and
optimization algorithms can often provide satisfactory resolutions.
This article introduces a set of quantum algorithms to solve the mis-
sion planning problem and demonstrate an advantage over the clas-
sical algorithms implemented thus far. The problem is formulated
as maximizing the number of high-priority tasks completed on real
datasets containing thousands of tasks and multiple satellites. This
work demonstrates that through solution-chaining and clustering,
optimization and machine learning algorithms offer the greatest
potential for optimal solutions. This article notably illustrates that
a hybridized quantum-enhanced reinforcement learning agent can
achieve a completion percentage of 98.5% over high-priority tasks,
significantly improving over the baseline greedy methods with a
completion rate of 75.8%. The results presented in this work pave
the way to quantum-enabled solutions in the space industry and,
more generally, future mission planning problems across indus-
tries.

Index Terms—Earth observation, quantum algorithms,
quantum optimization, quantum reinforcement learning, satellite
mission planning.

I. INTRODUCTION

THE reliable functioning of Earth-orbiting satellites cru-
cially affects our everyday services such as connectiv-

ity [1], navigation [2], and media [3]. Most satellites receive
dynamic instructions on executing their mission in orbit, and
planning the exact sequence of tasks is critical to the efficiency
and sustainability of the project [4]. Algorithmic optimization
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solutions have been suggested [5], [6], [7] as a remedy to
the planning problem. With the rise of quantum technologies,
there is a need to explore how quantum computing can im-
prove the time complexity or the quality of these solutions.
This work focuses on planning the mission of Earth-orbiting
imaging satellites using quantum machine learning [8], [9],
[10] and optimization. Specifically, it explores using near-term
quantum technologies to improve the solution’s effectiveness
today. Similar approaches, such as the contribution of Wu et al.
[11], suggested an algorithm to overcome the scheduling task
using quantum annealers. Stollenwerk et al. [12] reviewed
the literature and found that although innovative developments
existed, none revealed any practical advantage over classical
approaches. The current work explores the interplay between
classical and gate-based quantum computing algorithms. The
practical advantage of employing this hybrid approach was
shown in our earlier contributions [13], [14], [15].

In general, space mission planning can be a computationally
hard problem [4] to solve; in large-scale missions, the size of
the problem requires a prohibitive amount of computational
resources. Finding an efficient plan requires the optimization of
movement and the reordering of tasks to maximize the number
of total completed tasks. In this work, each task is a request
made to the satellite to capture an image of the surface of the
Earth, and the aim is to maximize the number of images taken,
given a list of all requests and a total available time. In this
work, the imaging satellites orbit the Earth exactly on the Earth’s
terminator, which is the line separating Earth’s sun-lit areas from
the dark ones. In 24 hours, the satellite orbits approximately
15 times around the Earth, which leads to 15 orbits shown
schematically in Fig. 3(a). To capture the image, the satellite
must continuously aim the camera at the target area for a time
known as the acquisition slot. Each requested image has an
allocated data-take opportunity (DTO) window. The satellite
must point in the appropriate direction within this window for
the entire acquisition period to accomplish a request. To aim
at an area on Earth, the satellite needs to rotate its camera to
point in the desired direction. The latter movement introduces a
time delay that, when added to the acquisition time, could limit
the overall agility of the satellite in covering multiple areas. The
efficient satellite mission plan will be able to choose the order of
the acquisition requests to maximize the number of completed
requests.

This article discusses the benefits of the optimization and
reinforcement learning (RL) algorithms over a greedy baseline
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algorithm, the unique advantage offered by the potential of quan-
tum computing, and a demonstration of how quantum methods
can be applied to improve machine learning and optimization
models. Specifically, the novel quantum RL approach shown
in Section III-D4 offers a completion rate of 98.5% on highest
priority requests in a multisatellite system. The model hybridizes
the AlphaZero approach in [16] and is trained on the QMware
quantum cloud [17]. Section II introduces the practical problem
setup in more detail, including the details on the data format-
ting in Section II-A, reordering the requests in Section II-B,
relaying algorithm in Section II-C, and on solution chaining
in Section II-D. Section III offers three algorithms and their
respective results: Section III-B establishes a baseline greedy
algorithm, and Sections III-C and III-D discuss the optimiza-
tion and RL algorithms. Finally, Section IV summarizes the
results.

II. SATELLITE MISSION PLANNING

Each satellite’s orbit is constrained to the Earth’s terminator.
Each satellite can only rotate at a maximum of one degree per
second to orient itself appropriately to capture images within the
acquisition window. Furthermore, the DTO duration for each
area to be captured is defined by the arc ranging within 45◦

(referred to as the depointing angle) from the apex point, which
is the point directly above the center of the request on Earth. As
a result of the width of these arcs, multiple requests can have
substantial overlap in their acquisition windows. Furthermore,
while coordinates for image requests are provided in latitude
and longitude, the satellite coordinates support an Earth-centric
inertial (ECI) format, providing more spatial location support.
Finally, two datasets are tested in this work, including a single-
satellite set containing 462 requests and a two-satellite system
with 2000 requests. The main results of this work focus on the
performance of various algorithms on the latter dataset and only
for the requests with the highest priority.

A. Data Formatting

Two information sets were used in the preparation of this
article:

1) information about the satellite motion, including
a) the orbit number;
b) time stamp; and
c) satellite position and velocity in Cartesian ECI coordi-

nates; and
2) information about acquisition request, including
a) request ID;
b) request priority ranging from 1 to 4, where 4 denotes the

lowest priority;
c) start and end times of the DTO window of the request;
4) the coordinates of the start and end of the median line;
5) satellite ID; and
6) Boolean values indicating the progress of the acquisition.
Fig. 1 demonstrates the satellite movements during acquisi-

tion and the data that must be tracked during the capture, such
as the acquisition angles, the points at which the DTO begins
and ends, and the median coordinates.

Fig. 1. Trajectory of a satellite orbiting on the Earth’s terminator and across a
DTO window. At the first and third positions on the orbital line, the satellite is
at the ends of the request’s DTO window, as its depointing angle is maximized
at 45◦. At its second position, it is at the apex point, directly above the request
location.

B. Request Priority Ordering

Considering the priority associated with each request, it is
possible to express this objective as maximizing the completed
requests in the order of priority; the highest priority requests
are considered first, and only the lower priority requests are
considered upon completion. The exact quantification compares
the number of higher priority requests accomplished. It moves
on to the next priority in case of equality, but this work judges
the algorithms by their completion rate performance purely on
the high-priority π1 request.

C. Relaying Algorithm

The satellite must rotate according to the relaying algorithm
to move from one request to another. To compute this rotation,
two points of interest are the final median points of the first
request and the initial median point of the second request. These
points, respectively, signify the time at which the first request
was completed and the time at which the next request will begin.
For a given transition, the relaying algorithm operates in two
steps: 1) it computes the relative positions of each median point
for the satellite, and 2) calculates in degrees the angle between
these vectors. Assuming that the satellite rotates at a constant
speed of one degree every second and that the Earth is a perfect
sphere, the resultant angle can be approximated as the total
relaying time in seconds.

D. Solution Chaining

Solution chaining considers the DTO windows, overlaps, and
the windows’ length compared to an acquisition time estimate.
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Fig. 2. (a) Visualization of DTO windows (horizontal bars) over a horizontal axis of time and a vertical axis indicating request index. (b) Visualization of solutions
(green rectangles). (c) Chaining of requests based on their DTO windows and completion windows. As is evident, chaining provides a roadmap to connect all
completed requests and map out the order of requests.

DTO windows and possible solutions within those windows are
then visualized over an axis of time—see Fig. 2(b). The most
efficient preliminary method for this setting is to sort the requests
by the start of their DTO windows and map the acquisitions.

Next, the individual requests chained: the intermittent time
between captures is calculated using the relaying algorithm,
after which the algorithm ensures sufficient time for the relaying
movement between the completion of each pair of consecutive
requests, ensuring that a sequence of requests can be executed
in the provided time. Chaining enables the suggested solutions
within the DTO windows of each request, which are otherwise
independently scattered, to be connected together into one com-
prehensive solution for satellite movement. Shown in Fig. 2(c) is
a visualization of the chaining process between multiple requests
over time.

III. RESULTS: QUANTUM ALGORITHMS FOR SATELLITE

MISSION PLANNING

A. Clustering for Preprocessing

To deal with increasing complexity in problems is to reduce
the size of the dataset and deal with fewer parameters or data
points at once. Therefore, clustering is useful to stratify the
data by similarities and shorten the calculations necessary for
the overall program. The simplest method to cluster the dataset
is sorting the samples based on a single feature of the data,
a method known as bunching. The bunching algorithms are ex-
plained in Appendix A, but this section focuses on unsupervised-
learning clustering methods such as the K-means algorithm
[18], [19].

This algorithm is a well-known clustering algorithm, and its
usage of physical distances in creating clusters makes it a natural
fit for the Space Mission Planning problem. This algorithm is
iterative, meaning it runs multiple iterations of the same steps
and finally converges at a solution. The first step of this algorithm
is the assignment stage; once k random points are initialized
to represent the k cluster centroids, each point in the dataset
is assigned to the closest centroid. Once this is complete, the
values of all points assigned to each centroid kn are averaged,
and the value of kn is updated to the newly obtained mean value.
Once these two steps are completed, they are repeated until the
centroids no longer shift between two iterations (generally to

TABLE I
RESULTS FOR THE GREEDY ALGORITHM BY PRIORITY, RUN OVER TWO

SEPARATE DATASETS

an error threshold), which is when the final clustering for the
dataset is attained. The K-means algorithm clustered the dataset
based on all the features of the requests: the DTO start and end
times and the coordinates of the start and end of the median
line. This ensured that clusters bunch the requests based on their
DTO windows and geographical locations. The latter is crucial
in efficiently using the relaying algorithm, as the geographically
close requests are simpler to internavigate.

B. Greedy Algorithm

The classical greedy algorithm is used to provide a reference
solution. First, the orbital and request data are separated by
satellite, and then the requests are clustered. In each cluster, the
algorithm begins at the satellite’s given start time and increments
by one second until it enters the DTO window of the first request.
Once the time stamp enters a DTO window, the algorithm checks
for enough time to complete a request. If so, it completes the
request, increments the time by the sum of the relaying time and
the acquisition time, adds the request ID to a list of completed
IDs and moves on to the next request. The algorithm chooses
the highest priority request if multiple requests are available at
a timestamp. If insufficient time to complete a request, it simply
moves on to the next request and repeats the process. Once the
final request is completed, or the timestamp exceeds the final
DTO window, the algorithm outputs the percentage of completed
requests of each priority.

An important limitation of the greedy algorithm is its band-
width for anticipation, but it provides a baseline for comparison.
Its simplicity allows it to run faster than other models, making
it a good benchmark for data preprocessing. The results in
Fig. 3(b) and Table I show the greedy algorithm struggles as the
complexity of the input data increases. Therefore, to solve this
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Fig. 3. (a) Schematic view of 15 satellite orbits performed within approximately 24 h. (b) Results of the greedy algorithm are shown on the map. The task contains
2000 requests that are planned for acquisition using two satellites. Green points correspond to completed requests, whereas blue points are missed requests. (Inset)
Progression of completed compared to missed requests.

TABLE II
RESULTS OF THE GREEDY ALGORITHM USING CLASSICAL

K-MEANS CLUSTERING

problem, algorithms that can handle high levels of complexity
without compromising accuracy are required. The results of the
greedy algorithm serve as the baseline algorithm in this work.
As evident in Tables I and II, the greedy algorithm solves the
1sat/462req dataset well in clustered and unclustered cases, but it
struggles with the 2sat/2000req dataset. Thus, the latter was cho-
sen as the comparison dataset as it allowed more possibilities for
improvement. Furthermore, the unclustered greedy algorithm
performs best on this dataset, so it was chosen as the baseline
algorithm here, it should be noted that only the top priority π1

requests were taken as the baseline, so the models’ accuracy
performance will be compared with the baselineπ1 2sat/2000req
of 75.8%.

C. Optimization Methods

As discussed earlier, one potential way to improve the runtime
of an algorithm was to break the data into smaller clusters to
reduce the necessary processing power. However, attempting
to build a fundamentally more powerful algorithm, such as an
optimization model, could be more fruitful. Optimization prob-
lems involve information and formulations, including graphs,
movement patterns and permutations, and multiple viable solu-
tions, out of which one ideal solution must be determined by the
metrics and constraints of the problem. As such, optimization
methods are well suited for mission planning problems akin to
the one at hand, which aims to map out the best possible course of
action for a system of satellites seeking to maximize the number
of completed requests. Optimization, however, is expensive in
terms of time and computation; consequently, the potential of
harnessing the quantum advantage for optimization problems

could be especially valuable in discovering and delivering a large
speedup for mission planning problems.

Some research for optimization for space mission planning
currently exists. For instance, in [20], the problem of Earth
observation from a satellite (EOS) is investigated, focusing on
obtaining images of certain areas of the Earth’s surface related
to customer requests. An optimization approach for EOS’s
daily photo selection (DPSP) is proposed. DPSP is related to
operational management and planning processes, where each
photo the client orders brings profit. Still, not all requests can
be satisfied due to physical and technological limitations. The
objective is, therefore, to select a subset of queries for which
the profit is maximized, and the proposed algorithm is based
on the metaheuristic ant colony optimization algorithm (ACO).
Examples based on real data are used as reference problems.
The calculations show that the proposed algorithm can generate
competitive and promising solutions.

The most well-known quantum-friendly optimization method
is the quadratic unconstrained binary optimization (QUBO)
model, which encapsulates the set of all optimization problems
with the following attributes:

1) all variables are treated as binary objects;
2) constraints, while not necessarily absolute, are enforced

accordingly by use of the reward function.
This work explores the QUBO-adaptable formulation known

as the integer optimization model for the space mission planning
problem. This solution has benefits and drawbacks, but can serve
as a viable solution to the satellite optimization problem.

The integer optimization model is conceptualized by encoding
the desirable outcome of the solution in the cost function, which
should be maximized or minimized on the lattice of integer
points of the special feasible subset in the multidimensional
space. This feasible subspace is defined by adding the constraints
of the satellite mission planning problem. One of the most
powerful approaches to that problem is the branch and cut algo-
rithm [21], used in solvers. In addition, the following functions
are incorporated to streamline the calculations for the algorithm
to stay within the constraints. Incorporating these functions is
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crucial to developing viable solutions as these functions, built
over the Orekit space flight dynamics library [22], are the key
to accurate space mission planning.

1) Attitude Pointing: given the satellite, timestamp, and a pair
of longitude and latitude coordinates, this function returns
the attitude (roll, pitch, and yaw) angles of the satellite
when it is pointed toward the provided coordinates.

2) Acquisition Duration: given the starting and ending me-
dian coordinates of any request, this function returns the
amount of time, in milliseconds, that the satellite would
take to acquire the image.

3) Maneuver Duration: given the beginning and ending atti-
tude angles (roll, pitch, and yaw), this function returns the
amount of time necessary for the satellite to complete the
maneuver from one attitude to the other.

4) Read Ephemeris: given a JSON file and a satellite ID, this
function returns the satellite orbital information (direc-
tional speed, directional position, timestamps, etc.) in the
form of an Orekit Ephemeris object, which is then used to
perform calculations for other functions using the Orekit
library.

Upon incorporating the above functions, revision of the con-
straints on this integer-based model, and modification of the clus-
tering algorithm to generate a greater number of smaller clusters,
the algorithm’s runtime was maintained despite the significant
increase in complexity. Given a set of requests, the variables
central to this model include the priority of each request, the
acquisition duration of each request, the start and the end of
the DTO windows, and the location of the median points of the
requests. From this, the algorithm calculates for each reasonable
pair of the requests inside the small cluster all possible start
times for the first request in a way that allows the relaying
maneuver to the 2d request. This is achieved through simple
iteration, using the Orekit functions described above: an initial
value for the relaying maneuver duration is set to one second.
Then, the maneuver start and end angles are calculated with
the attitude pointing function. Afterward, suppose the rotation
time between the obtained angles via the maneuver duration
function is not equal to or greater than one second, and the DTO
limitations are not violated. In that case, meaning the relaying
time is equal to one second. Otherwise, the duration is increased
by one second, and this procedure is repeated until either the
duration is appropriate or the DTO is violated. The result of these
computations tmin is treated as the minimum relaying maneuver
time.

Given a set of requests f ∈ F, the priority of each request is
denoted as πf , and the acquisition duration as τf . The start of
the DTO window (release time) for request f is represented as
rf and the deadline of the DTO window is represented as df .
In addition, Q ⊂ N indicates the order of accepted requests.
As a result, index q ∈ Q = {0, . . . , Q− 1} demonstrates the
position in the queue of requests in which request f is accepted.
The discretized rotation of the satellite at the inception of the
acquisition of request f is indicated by αstart

f ∈ Astart
f . Similarly,

αend
f ∈ Aend

f is the discretized rotation of the satellite after the
acquisition of the request. However, all possible inceptions bfα
for requests can be streamlined in order of increasing time. Note

that bfα is the set of all possible points in time at which it is
possible to complete the f1 request and then move to the f2
request. That is, it is at a time greater than rf . Thus, all the
possible angles will correspond to these moments. The set of
possible pairs is defined as L, such that the maneuver f1 → f2
is possible; i.e.,

∃bf1αf1
, bf2αf2

: bf1αf1
+ tmin(bf1αf1

+ τf1 , f1, f2)

+ τf1 = bf2αf2
(1)

where tmin(t, f1, f2) is the minimum amount of time required for
a satellite to rotate from its position at the end of f1 at the moment
t to the starting point of f2. For all (f1, f2) ∈ L, the setsBstart

f1f2
⊆

Aend
f1

and Bend
f1f2

⊆ Astart
f2

and mapping Mf1,f2 : Bstart
f1f2

→ Bend
f1f2

are defined such that Mf1,f2(α1) = α2, if bf1α1
+ tmin(bf1α1

+
τf1 , f1, f2) + τf1 = bf2α2

.
The binary variable xfq is introduced such that

xfq =

{
1, if the fth request is started in the qth slot

0, otherwise.
(2)

In addition, the variable yfα is also introduced, where

yfα =

{
1, if angle α is the start angle for request f

0, otherwise.
(3)

Finally, the indicator variable κf1f2 shows if requests were
completed successively one after another

κf1f2 =

{
1, if the f2th follows right after the f1th

0, else.
(4)

The cost function is defined as

∑
f∈F

⎛
⎝∑

q∈Q
Jfxfq −

∑
α∈Astart

f

γfαyfα

⎞
⎠ → max (5)

where Jf is the weight of request f , and γfα is a coefficient
needed for penalizing time consuming solutions. Jf = 1 was
selected for the lowest priority requests in each cluster. For the
higher priority requests, the weight is greater than the sum of
all lower priority requests’ weights by one since each higher
priority request is valued more than any amount of lower pri-
ority requests. The coefficients γfα range from 0 to 1

Q for the
following definition:

γfα =
bfα − rf

Q(df − rf − τf + 1)
. (6)

It guarantees that
∑

f

∑
α∈Astart

f
γfαyfα < 1, and consequently,

the completion of the lowest priority request will be more
important than the particular order of requests, but the earliest
possible completion of each request is preferable.

As was the case with the other optimization model, more than
one request cannot be executed in the same order, and each
request should be completed not more than once

∀f ∈ F,
∑
q∈Q

xfq ≤ 1 (7)
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∀q ∈ Q,
∑
f∈F

xfq ≤ 1. (8)

Any completed request is started with one particular possible
angle ∑

α∈Astart
f

yfα =
∑
q∈Q

xfq ∀f ∈ F. (9)

All requests are completed one after another without empty slots
in line until the satellite stops∑

f1∈F
xf1(q−1) ≥

∑
f2∈F

xf2q ∀q > 0. (10)

To evaluate the variable κf1f2 appropriately, the following sys-
tem of linear equations is introduced, and each excludes the
impossible values of κf1f2 . First, if requests f1 and f2 were
completed straight one after another, then κf1,f2 = 1:

κf1f2 + 1 ≥ xf1,q−1 + xf2,q ∀f1, f2 ∈ F, q > 0. (11)

Each request is followed by not more than one request, and each
request follows after not more than one request∑

f1∈F
κf1,f2 ≤ 1 ∀f2 ∈ F (12)

∑
f2∈F

κf1,f2 ≤ 1 ∀f1 ∈ F. (13)

If one request follows another one, then each of these requests
was completed in some order

κf1f2 ≤
∑
q>0

xf2,q ∀f1, f2 ∈ F (14)

κf1f2 ≤
∑

q<Q−1

xf1,q ∀f1, f2 ∈ F. (15)

With the use of predefined mapping Mf1,f2 , if the request f1
starts with angle α1, and the request f2 is the next one, then the
next acquisition start angle is fixed

yf2α2
+ 1 ≥ κf1,f2 + yf1α1

∀α1 ∈ Bstart
f1f2

(16)

where α2 = Mf1,f2(α1).
In addition, maneuver f1 → f2 is possible only with partic-

ular initial angles for f1. Otherwise, the satellite will not have
enough time to finish the acquisition of the request f1 and move
to f2 ∑

α1∈Bstart
f1f2

yf1α1
≥ κf1f2 ∀(f1, f2) ∈ L. (17)

On the other hand, if f1 → f2 is an impossible transaction, then

κf1,f2 = 0 ∀(f1, f2) �∈ L. (18)

The final constraint fixes the acquisition start angle for the first
request in a queue as the earliest possible angle

yfα0
≥ xf0 ∀f ∈ F (19)

where α0 is an angle corresponding to the beginning of the DTO
for request f .

In contrast to the greedy algorithm, which considered the
requests in the order of open DTO windows, this model is
more intelligent in finding the best path to fit the maximal
number of requests. In the end, the π1 requests reached 98.1%
completion using the Gurobi solver [23]. The solution obtained
through optimization is partly depicted in Fig. 4. Furthermore,
the clusters are connected, calculating the minimum relaying
maneuver time from the last request of the previous cluster to that
of the next. This is illustrated in Fig. 4 as cutting the beginning of
every DTO from the start if it proves impossible to rotate toward
the request in this period. After this procedure, the next cluster
can be treated as independent.

One of the greatest benefits of this model is its compatibility
with both near-term and long-term quantum technology. As a
linear optimization model that uses a grid of binary parameters,
it can be transformed into QUBO, as it is shown in Appendix B,
and fit rather quickly to the quantum Ising model, a model
containing arrays of qubits in a grid, where their spin states
depend on their neighbors. Furthermore, as this model functions
akin to a minimization problem, it would be extremely efficient
to run on a quantum annealing machine [24], which could solve
optimization problems by slightly changing the Hamiltonian
from a given initial state with a known minimum to a new state,
representing the optimal solution. However, it is complicated
to use the satellite mission planning problem in the QUBO
form via currently available classical or quantum devices. For
example, both D-Wave’s Leap Hybrid solver [25] and Gurobi
have difficulties solving even a small cluster with four requests
over a time limit of 1 min. Still, linear programming can obtain
the solution for the 2000 requests and two satellites dataset in
less than 3 min. This runtime was achieved by decomposing
the clusters so that their final size was small enough to achieve
approximately the same time as the greedy algorithm. Note that
if the same number of requests were simultaneously considered,
the runtime would be noticeably longer.

D. Reinforcement Learning

RL is a machine learning paradigm in which an agent interacts
with some environment and trains through informed trial and
error. The RL training algorithm uses reward functions to assign
value to the agent’s actions in any state of the environment.
Generally, a state can have constraints and features. The RL
agent can use a policy model to decide on an action given a
state, which subsequently affects the environment and trans-
forms the state. Suppose the resultant state of the environment
is engineered by the data scientist to contain a positive reward.
In that case, the policy model is trained to take the appropriate
action to maximize the probability of achieving that reward. The
Environment is a function of a triplet of variables (S,A, P ),
where S is a state space, A is an action space, and P is a
transition function. When the reward function r is factored in, a
Markov decision process (MDP) is generated with the property
(S, A, P , r), r : S ×A → R. The Agent starts from state s0
and takes action a0, for which the reward r0 is obtained in each
step of training and subsequently trains by producing trajectories
T := (s0, a0, r0, s1, a1, r1, s2, a2, r2, · · · ).
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Fig. 4. Chaining results of classical integer optimization algorithm within clusters of data points.

1) RL Environments: Two environments are developed for
this AEOS task: satellite- and request-centred environments. For
each environment, requests are sorted by their DTO open time.

The satellite-centred environment: The agent views the prob-
lem from the satellite’s perspective and considers the 100 closest
(by DTO open time) data points for each satellite, each utilizing
ten data parameters. Moreover, three additional features were
also made available to the agent: the current time for the satellite
and the latitude and longitude of the starting point of the last
completed request, creating a total observation space of size
1003. The number of nearest requests is a variable that depends
on task size. A Boolean flag is one of the features kept for
each request, marking each data point as either complete or
incomplete to avoid redundancy, and the observation space is
made to only consider requests that are marked as incomplete to
expedite the computations required by the agent, which is built
as a neural network.

Once the request is selected, the agent is rewarded with 1
if that request is completed and 0 otherwise. With this process
recurring, the agent attempts to complete as many requests as
possible until the time of the satellite is greater than the DTO
windows of all remaining requests, meaning they can no longer
be completed. The agent works with each satellite and predicts
which request must be done. The data used in this environment
were artificially generated. The request-centred environment: at
each step, the agent views the problem from the perspective of
a request, deciding which satellite is best suited to complete
it. The 5 nearest request options are determined by DTO open
time for each satellite, and the request to execute is chosen
by the minimum request execution time. This minimum time
is calculated as the sum of the satellite timestamp, maneuver
duration, and the acquisition time due to solution chaining. It
must be less than the request DTO end time for completion.
This procedure is then iterated with the next batch of five nearest
satellites.

2) Proximal Policy Optimization: The proximal policy opti-
mization (PPO) algorithm, shown in Fig. 5 and first introduced
in [26], was implemented to provide a mission planning policy.
In RL, a policy is an operation that maps an action space to a
state space. The agent learns the best action for each situation
by calculating the policy gradients. In other words, the agent
uses gradient descent to calculate the expected value of each
action at a certain state space and determine which action has
the likelihood of the highest reward. The equation for the PPO

algorithm is as follows:

L(θ) = Ēt[min(rt(θ)Āt, clip(rt(θ), 1− ε, 1 + ε)Āt)] (20)

where Ēt is the current expected value of the policy, θ is the
policy parameter, ε is the hyperparameter, Āt is the estimated
advantage provided by the PPO at time t, and rt(θ) is the
importance sampling ratio. This ratio, derived from the Monte
Carlo sampling methods [26], denotes the ratio of probabilities
under both the old and the new policies. By keeping the value of
ε small, the model ensures that the update on the policy at each
increment is not too large; as a consequence, the learning done
by the model stays relevant.

3) Hybrid-Quantum PPO: Inspired by the quantum advan-
tage shown in [13], [14], [15], [27], [28], [29], [30], this section
investigates the utility of a hybrid-quantum neural network as
a policy model for RL. Fig. 5(b) illustrates the specific policy
network within a hybrid MLP model. In the quantum-classical
network, the output of the classical neural network is used
as inputs to a parametrized quantum circuit (PQC). PQCs are
quantum circuits that use parametrized quantum gates [31], [32]
such as Pauli rotations to encode data x and trainable parameters
θ. The four-qubit PQC used in this work consists of three signifi-
cant components: variational, data encoding, and measurement.
The variational layer comprises a layer of Pauli-X rotations
encoding four trainable parameters and ring-shaped CNOTs for
entanglement. The data encoding layer embedded four features
in parallel using Pauli-Z rotations, and the measurement layer
comprised two Z-basis measurements on the first two qubits. In
sequence, four qubits were initialized in the ground state, and
then a variational layer with randomly initialized parameters
was appended, followed by eight repetitions of encoding and
variational layers. Each of the eight encoding layers encoded
four features of the dataset, which created a lattice of 32 fea-
tures across the four qubits. Finally, the measurement layer
was included to produce two classical real-valued outputs.
Fig. 8(a) shows this improvement in practice: the hybrid quan-
tum neural network achieves a higher reward in only 8k steps,
which remains inaccessible to a classical network of the same
complexity even after 110k environment steps. Notably, these
two networks were trained five times with varying initialization
points, and the plot in Fig. 8(a) only shows the best runs of the
hybrid and the classical models. The reader might notice that the
hybrid model starts at a higher mean reward than the classical, a
behavior observed elsewhere in the literature [13]. Additionally,



RAINJONNEAU et al.: QUANTUM ALGORITHMS APPLIED TO SATELLITE MISSION PLANNING FOR EARTH OBSERVATION 7069

Fig. 5. (a) RL PPO model used to solve the mission planning problem. The state of the model encompasses the data of 100 requests, which are fed into the
MLP agent to output an action (one request that is selected to complete), which then feeds into the environment (clip equation), generates an appropriate reward,
and updates the state. (b) Quantum-hybrid RL model. A quantum circuit (left) is added to the beginning of the MLP Agent in the RL model (right) to incorporate
quantum computation into the neural network.

the quick ascent aligns with the findings of [33], suggesting that
quantum models can generalize from a few data points. Finally,
Fig. 6 visualizes the solution chaining performance of the PPO
algorithm.

4) Hybrid AlphaZero: The optimal results are expected from
picking the best candidate from part of the solution pipeline.
Specifically, in Section III-D, it was shown that RL is a powerful

algorithm that can be boosted in training and solution optimality
through hybridization with quantum models. This section shows
hybridized AlphaZero [16].

The classical AlphaZero was a RL algorithm developed by
DeepMind that showed promise in solving difficult RL prob-
lems, such as chess, shogi, and go [16]. AlphaZero uses a
computational tree of environment states whose values and
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Fig. 6. Visualization of the chaining process used to complete requests within each cluster of the PPO algorithm.

Fig. 7. Hybrid AlphaZero architecture used to achieve a near-optimal solution to the satellite mission planning. This architecture was motivated by the parallel
hybrid networks (PHN) in [36] where information processing in quantum and classical models flow in parallel. The particular data encoding was based on the
quantum depth-infused layer shown in [14].

Fig. 8. (a) Rewards the classical and hybrid PPO RL agents achieve. The hybrid model reaches a higher reward at a significantly improved learning speed. (b)
Agent reaches a maximum normalized reward of 0.464 after 70 000 steps of the simulation. This is compared to a total possible reward of 0.471, translating to an
accuracy of 98.5%.
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TABLE III
SUMMARY OF THE PERFORMANCE OF THE ALGORITHMS ON THE 2000 REQUESTS TASK PERFORMED WITH 2 SATELLITES

probabilities are determined from the outputs of value and
policy networks. The AlphaZero implementation in this work
comprises four parts: a Monte Carlo tree search (MCTS), an
encoding network, a policy network, and a value network.

The foundation of this model is akin to a MCTS model, which
is used primarily for path prediction problems and board games
based on strategy [34], [35]. The four major components of
MCTS are selection, expansion, simulation, and backpropaga-
tion. The model begins at the tree’s root and selects optimal child
nodes until it reaches a leaf. Once it reaches the leaf, it expands
the tree, creating a new child node. Then, the model simulates
the remainder of the path-finding process from the newly created
node and finally backpropagates with the newfound information
to update the hyperparameters of the tree. The hybrid AlphaZero
model uses MCTS with a parametrized quantum circuit as its
policy network. The MLP agent of the model first recommends
a state action. Then the action is applied to the environment,
generating a reward and an updated state. However, in this case,
the environment is the MCTS model; the recommended action
is simulated in the model. Then, the backpropagation step of
the MCTS is used to update the weights within the tree itself to
refine its recommendations.

As each iteration of this loop occurs, there is also an outer
loop in this algorithm. That outer loop is primarily concerned
with the loss values being optimized; as a result, once the agent
recommends an action, the outer loop takes training examples
of a certain size and simulates the results over these batches to
calculate the policy loss, value loss, and total loss. Once these
values are calculated, the neural network weights are adjusted
and fed back into the original loop, where the cycle repeats until
the loss values are optimized.

Fig. 7 illustrates the inner workings of the hybrid AlphaZero
model employed in this article. The state variables are passed
into an initial encoding network with two hidden layers of
sizes 256 and 32 neurons. The information is then passed in
parallel [36] to 1) a single neuron using a fully connected layer
and 2) a policy network as a PQC. The PQC resembles the one
explained and implemented in the PPO model in Section III-D3.
Fig 8(b) shows the training performance of this model (best out
of five tries), which achieves a completion rate of π1 = 98.5%.
Presenting the highest π1 completion rate on the 2000 requests
and 2 satellites dataset of any other model explored in this article.
The completion rates of the highest performing algorithms from
each section on this dataset are displayed in Table III.

IV. DISCUSSION

This work provided two classes of solutions to the scheduling
problem of satellite mission planning: optimization and hy-
bridized RL. From each class, the best-performing candidates
were the integer optimization model and the hybrid AlphaZero,
respectively. The dataset with 2 satellites and 2000 was used
as a performance benchmark for the algorithms presented in

this work. The optimization and hybrid AlphaZero algorithms
achieved π1 completion rates of 98.1% and 98.5%, respectively,
while the greedy algorithm only exhibited a 78.5% (63.6%
with k-means clustering) completion rate. In the single satellite
model, the optimization algorithm reached 100% completion on
π1, π2, and π3 requests and 96.2% completion on π4 requests
in 6 min. This work showed that by using RL and optimization
models, it is possible to improve the results of mission plan-
ning that are otherwise obtained through simple greedy models.
This work presents a step toward creating quantum-enhanced
solutions in the space industry.

APPENDIX

A. Bunching Algorithms

Below are a few bunching algorithms used to cluster the data
purely by sorting with respect to certain dataset features.

1) DTO Bunching: This algorithm first sorts the data by the
DTO start times. After that, the data points are clustered by DTO
overlap. In other words, all entries in any given cluster share at
least one portion of their DTO windows with all other requests
in the same cluster. As DTO windows are defined by the time
when the satellite is in a position to capture the request, this
method also functions as a form of geographical clustering due
to the correlation of the location and DTO times.

2) Priority Bunching: In this algorithm, the requests are
simply clustered by their priority ranks (1–4) and then ordered
by the DTO start times. The utility of this lies greatly in the
importance of the priority rankings, as the algorithm operates
on the premise of each priority rank request being worth n times
a request of the next highest priority rank, where n is the order
of magnitude between two priority sets (for instance, a priority
1 request would be n2 times as valuable as a priority 3 request).

3) Bunch Sort: This algorithm puts together the two cluster-
ing algorithms above, in a sense. First, the data are sorted by
DTO windows, after which it is clustered by the DTO overlap.
However, after that, the data are sorted within each cluster, this
time by the end of their DTO windows and then by priority index.
Consequently, data points with the same priority in the same
cluster are ranked by the end of their DTO windows, maintaining
the DTO structure within the priority indexing structure.

B. QUBO Formulation

Adiabatic quantum computers can approximately solve NP-
hard problems, such as quadratic unconstrained binary opti-
mization, faster than classical computers. Since many machine
learning problems are also NP-hard, adiabatic quantum com-
puters might be instrumental in training machine learning mod-
els efficiently in the post-Moore’s law era. To solve problems
on adiabatic quantum computers, they must be formulated as
QUBO problems, which is possible by several techniques. This
article formulated the problem as a QUBO problem, making
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Fig. 9. Flowchart used to implement the greedy algorithm in Section III-B. The time-incrementing block references the “open DTO windows” query. Without
accessible DTOs within a cluster, satellites remain idle under the greedy algorithm, with the simulation advancing until availability arises. Upon addressing all
requests, satellites transition to the subsequent cluster and replicate the procedure. Note that the connection between one-second time increments and new clusters
is implicit rather than explicit.
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it conducive to being trained on adiabatic quantum computers.
Since all the constraints will go into the cost function with some
coefficients, they must be algebraically reformulated. Below
are examples of how these constraints change according to the
QUBO formulation

∀f ∈ F,
∑
q∈Q

xfq ≤ 1 ⇒
⎛
⎝∑

q∈Q
xfq − 1

2

⎞
⎠

2

(21)

∀q ∈ Q,
∑
f∈F

xfq ≤ 1 ⇒
⎛
⎝∑

f∈F
xfq − 1

2

⎞
⎠

2

(22)

∀f ∈ F,
∑

α∈Astart
f

yfα =
∑
q∈Q

xfq ⇒ (23)

⎛
⎝ ∑

α∈Astart
f

yfα −
∑
q∈Q

xfq

⎞
⎠

2

(24)

∀q > 0,
∑
f1∈F

xf1q−1 ≥
∑
f2∈F

xf2q ⇒

∑
f∈F

(xf2q − xf1q−1) +
∑
i

2izi = 0 (25)

where zi is a slack binary variable, and the number of slack
variables depends on the problem. Thus, the idea of the QUBO
formulation is to reduce all constraints to linear equalities, square
them, and then pose as penalties in the cost function. The
more rigorous analysis of the slack variable implementation is
provided in [37]. QUBO formulation is written in general terms
as

Q = Q0 + βC, C ≥ 0 (26)

where Q is a cost function, Q0 is the objective function of the
initial problem, β are some coefficients that must be picked
up, and C are nonnegative definite quadratic constraints. The
solution then takes the following form:

Q[q] = min
κ

Q[κ]. (27)

In the case where C[q] > 0, it is possible to choose such β, that
if q is unconstrained optimum, then it must be feasible. Beta is
chosen such that if q is not feasible, then

Q[q] > Q[feas] = Q[0] = 0 (28)

where Q[feas] means the initial zero solution.
The initial objective function that was used for the classical

solution will take the following form for the quantum solution:

Q0 = −
∑
f∈F

⎛
⎝∑

q∈Q
Jfx

2
fq −

∑
α∈Astart

f

γfαy
2
fα

⎞
⎠ → min . (29)

Also, the odds β are chosen so that there is a better solution
when the constraints are violated

C[q] > 0 ⇒ Q[q] ≥ Q0[q] + β > 0. (30)

Accordingly, in this case it is necessary to take β > −Q0[q].
The boundaries of q must be estimated, as the precise values are
undetermined. The worst estimate was chosen as the following:

β > −Q[q] = −
(
min
κ

Q0[κ]
)
= −

⎛
⎝−

∑
f

Jf

⎞
⎠ =

∑
f

Jf .

(31)

C. Greedy Algorithm

Fig. 9 showcases the logic of the greedy algorithm from
Section III-B.
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