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Predicting solar panel power output is crucial for advancing the energy transition but is com-
plicated by the variable and non-linear nature of solar energy. This is influenced by numerous
meteorological factors, geographical positioning, and photovoltaic cell properties, posing significant
challenges to forecasting accuracy and grid stability. Our study introduces a suite of solutions
centered around hybrid quantum neural networks designed to tackle these complexities. The first
proposed model, the Hybrid Quantum Long Short-Term Memory, surpasses all tested models by over
40% lower mean absolute and mean squared errors. The second proposed model, Hybrid Quantum
Sequence-to-Sequence neural network, once trained, predicts photovoltaic power with 16% lower
mean absolute error for arbitrary time intervals without the need for prior meteorological data,
highlighting its versatility. Moreover, our hybrid models perform better even when trained on lim-
ited datasets, underlining their potential utility in data-scarce scenarios. These findings represent
a stride towards resolving time series prediction challenges in energy power forecasting through
hybrid quantum models, showcasing the transformative potential of quantum machine learning in
catalyzing the renewable energy transition.

I. INTRODUCTION

Electricity generation prediction, especially for pho-
tovoltaic (PV) systems, is a crucial tool for renewable
energy adoption [1, 2]. The global economy must radi-
cally reduce emissions to stay within the 1.5°C pathway
(Paris Agreement) and the transition to renewable en-
ergy sources is necessary to achieve these objectives [3].
According to the IEA, solar PV’s installed power capac-
ity is poised to surpass that of coal by 2027, becoming
the largest in the world.

Accurate PV power forecasts are vital for multiple
facets of the energy industry such as long-term invest-
ment planning, regulatory compliance for avoiding penal-
ties, and renewable energy management across storage,
transmission, and distribution activities. Several stud-
ies show that an increase in forecasting accuracy re-
duces electricity generation from conventional sources.
Increased accuracy also reduces operating costs of sys-
tems through reducing the uncertainty of PV power gen-
eration [4]. They support improving the stability and
sustainability of the power grid through optimizing power
flow and counteracting solar power’s intermittent na-
ture [5]. Such predictions are foundational in increasing
the economic viability and improving the adoption of so-
lar energy as they inform pricing and economic dispatch
strategies, bolster competitiveness and over time reduce
reliance on reserve power. Additionally, they assist in
managing energy storage effectively and integrating PV
systems into the power grid [6], which is essential for the
enduring success of renewable energy solutions [7].

Traditional methods for predicting PV power have pri-
marily relied on statistical models, machine learning al-
gorithms, or a blend of both [8]. These approaches en-
compass a diverse toolkit, ranging from time series fore-
casting and artificial neural networks [1, 9, 10], to sup-
port vector machines [11, 12], k-nearest neighbor meth-

ods [13], and random forest models [14]. However, the
intermittent and non-linear nature of solar power gener-
ation, influenced by a wide range of meteorological fac-
tors, poses a significant challenge to the performance of
these conventional models [15].

In light of these challenges, quantum machine learn-
ing (QML) emerges as a promising avenue. This rapidly
evolving field, which melds the principles of quantum
mechanics with classical machine learning [16–19], can
offer enhanced capabilities for improving the forecasting
accuracy of time series tasks [20], including PV power
generation [21]. QML’s potential arises from quantum
features like superposition and entanglement, promis-
ing exponential speedups in certain tasks [22]. More-
over, QML algorithms produce inherently probabilistic
results, aptly suited for prediction tasks, and they may
potentially function within an exponentially larger search
space, amplifying their efficacy [23–26]. Nonetheless, im-
plementing quantum algorithms bears its own set of chal-
lenges, such as the need for error correction and sensitiv-
ity to external interference [27]. Yet, in spite of these
challenges, hybrid quantum-classical models, especially
hybrid quantum neural networks (HQNNs), have show-
cased their potential in diverse industrial realms, includ-
ing healthcare [28–30], energy [21, 31], aerospace [32],
logistics [33] and automotive [34] industries.

In this article, we present three types of hybrid quan-
tum models as potential solutions for PV power forecast-
ing. We assess the performance of our proposed mod-
els using a publicly accessible dataset, encompassing a
comprehensive array of meteorological variables as well
as hourly mean PV power measurements spanning a 21-
month period. This dataset, along with the data pre-
processing and analytical methodologies employed, is de-
scribed in detail in Section IIA.

Our first proposed HQNN architecture, articulated in
Section II B, incorporates classical fully connected lay-
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FIG. 1: The input to a hybrid quantum model is presented as a chronological data table, documenting hourly meteorological
parameters including ambient temperature (Ta), module temperature (Tm), and solar irradiance (I3, I15), alongside the mean
PV power output (P ). The model is designed to leverage this data to generate predictions of PV power output for a short-term
forecast aimed at near-future output, typically the next hour, and a long-term forecast that extends to a broader temporal
horizon.

ers with a vanilla variational repetitive quantum layer
(VVRQ). Our second model, delineated in Section IIC,
constitutes a hybrid quantum adaptation of the classical
recurrent neural network, termed the Hybrid Quantum
Long Short-Term Memory with quantum depth-infused
layer (HQLSTM). While the first two models can predict
the power for a certain hour ahead, the third model, pre-
sented in Section IID, a Hybrid Quantum Sequence-to-
Sequence Neural Network with quantum depth-infused
layer, HQSeq2Seq, after training is capable of forecasting
PV power for arbitrary time intervals without requiring
prior meteorological data.

Remarkably, despite having fewer parameters, our hy-
brid quantum models outperform their classical counter-
parts in terms of more accurate predictions, including
trained on a reduced dataset. We summarize our conclu-
sions and outline future research directions in Section III.

II. RESULTS

The application of HQNNs in addressing time se-
ries prediction challenges, specifically in forecasting PV

power output offers several advantages. Primarily, their
capability to operate within an exponentially larger com-
putational search space enables them to efficiently cap-
ture intricate data patterns and relationships [35]. This
feature not only enhances forecast accuracy [17, 36] but
also streamlines the learning process, requiring fewer it-
erations for model optimization [37]. Furthermore, the
inherent capacity of quantum technologies to manage the
uncertainty and noise ubiquitous in data offers more re-
silient and trustworthy predictions [22]. This is partic-
ularly pertinent to power forecasting, given the inherent
noise in meteorological data. Recent research also sug-
gests that quantum models can be represented as par-
tial Fourier series, positioning them as potential univer-
sal function approximators [38], thereby broadening their
applicability and efficacy in predictive tasks.

In terms of architecture, an HQNN is an amalgama-
tion of classical and quantum components. The classical
segments may consist of fully connected layers, convo-
lutional layers, or recurrent layers, while the quantum
segments are typically represented by variational quan-
tum circuits (VQCs) or their contemporary modifica-
tions [39, 40].
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FIG. 2: (a) Mean and standard deviation of the PV power value for each hour of the day. (b) Mean and standard deviation of
the PV power value for each month of the year. The plot shows the PV power reaching maximal values in June and July. (c)
Correlation matrix of input features. (d) Joint distribution of features.

A. Dataset

To underscore the advantages of hybrid quantum mod-
els using empirical evidence, we selected a publicly acces-
sible dataset [41] from a conventional generation plant
situated in the Mediterranean region. This dataset not
only provides comprehensive data but also allows bench-
marking with results from various algorithms available
in literature. A comparative analysis of our model’s pre-
dictions and those from the study by [10] is provided in
Section II E. The dataset, presented as a numerical table
showcased in Fig. 1, encompasses variables like hourly
mean ambient temperature (Ta), hourly mean module
temperature (Tm), hourly mean solar irradiance recorded
on two tilted planes with tilt angles of 3 and 15 degrees
(I3, I15), and hourly mean PV power (P ) spanning 21
months, accounting for more than 500 days.

Beyond the scope of constructing models for predicting
the output of PV panels, this dataset’s utility extends to
other applications. It aids in planning distributed bat-
tery energy storage systems [42], devising novel energy
collection systems [43], and researching the degradation
patterns of photovoltaic panels [44]. The dataset’s mul-
tifaceted applicability emphasizes its significance.

To ensure the validity and precision of the data, metic-
ulous preprocessing and analysis were undertaken. We
discovered approximately 20 anomalies in the original
dataset. To maintain a continuous timeline, missing data
points were replaced with the arithmetic mean of the pre-
ceding and succeeding day’s values. Additionally, data
corresponding to the date “12/31/13” was excluded as
it contained all-zero values, suggesting an error in data
collection. As a result, we obtained an uninterrupted
dataset ranging from 4:00 AM on “3/5/12” to 12:00 AM
on “12/30/13”.

Additional in-depth analysis of the dataset was also
conducted for a more nuanced understanding. Fig. 2(a)
delineates the hourly distribution of PV power across the
entire period. As expected, peak PV power values occur
during midday, whereas night time values plummet to
zero. Fig. 2(b) portrays monthly PV power fluctuations,
which are more volatile compared to daily patterns, likely
attributable to the limited number of full-year periods
in the dataset. Fig. 2(c) presents a correlation matrix
for the dataset features, identifying solar irradiances I3
and I15 as the features most correlated with PV power.
Finally, the joint distribution of dataset features depicted
in Fig. 2(c) further confirms that solar intensity is the
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feature most highly correlated with PV power.

B. HQNN

This section introduces our first proposed model, re-
ferred to as the HQNN. As illustrated in Fig. 1, the model
accepts weather data spanning 24 consecutive hours as
its input. The output is a prediction of the PV power
for the upcoming 25th hour. The HQNN presented at
the Fig. 3(a) is a combination of classical fully-connected
layers, in our case with 120, 17 and 8 neurons, and a
VVRQ layer, which is a VQC, consisting of q qubits and
d repetitions of variational layers, each distinguished by
unique weights. The choice of 120 neurons is methodical:
the model ingests 5 distinct features for each of the 24
hours, resulting in a total of 120 = 5 ∗ 24. The deter-
mination of the remaining parameters stemmed from an
extensive hyperparameter optimization process, detailed
in the subsequent sections.

Initially, every qubit in the VVRQ layer is set to the
state |0⟩. We subsequently encode the classical data by
converting it into rotation angles around one of the X,
Y , Z axes using Rx, Ry, Rz gates respectively. This con-
version employs the angle embedding technique [45]. For
each qubit, the rotation angle, denoted by xj , is deter-
mined by the j-th component of the input vector.

Following this, the variational layer is applied, which
can either utilize “basic” or “strong” entanglements. For
the “basic” entanglement, each qubit undergoes a rota-
tion by an angle wi

j around the X axis, subsequently
followed by a layer of CNOT gates [46]. Conversely, for
the “strong” entanglement, each qubit is sequentially ro-

tated by the angles w
(Z1)
ji , w

(Y2)
ji , and w

(Z3)
ji around the

Z, Y , and Z axes, respectively. This sequence is then
followed by a layer of CNOT gates. In both cases, the
variables i and j play crucial roles in determining the
operations. The variable i signifies the particular wire
to which the operation is applied, and it takes values
from the set 1, 2, . . . , q. Meanwhile, the variable j rep-
resents the number of variational layers and ranges from
1, 2, . . . , d.

Lastly, all qubits are measured in Pauli-Z basis, yield-
ing the classical vector v ∈ Rq. This output serves as in-
put for a subsequent classical fully-connected layer. This
layer processes information from q neurons into 1 neuron
that predicts the power value.

The proposed HQNN model will be compared with its
classical analog – a Multilayer Perceptron (MLP) that
consists of 4 fully connected layers with 120, 32, 3, 3,
and 1 neurons. The number of neurons in each layer
was selected by a hyperparameter optimization proce-
dure, detailed in the subsequent sections.

C. HQLSTM

This section presents a description of our second hy-
brid model – HQLSTM, which is a hybrid analog of the
classical LSTM model [47], with which predictions will
be compared in the following sections. LSTM architec-
tures have garnered significant attention in the realm of
time series forecasting, including in predicting PV power
[48–50].
HQLSTM models have proven themselves well for solv-

ing problems from various fields. Examples of successful
use of this model are the tasks of natural language pro-
cessing [51], the detection of software vulnerabilities [52],
and predicting solar radiation [53].
In this proposed model we added a quantum layer to

each of the LSTM gates [54]. Let’s take a closer look at
our implementation, depicted in Fig 3(b). The input to
the model is:

1. The current step information, represented by a
green circle, x(t). This is a tensor of size 5, re-
flecting the five features for an hour, which include
meteorological data and the PV power itself.

2. The information from the previous step, denoted
by a purple circle, h(t − 1). It consists of a tensor
of size hdim. For the initial step, this is simply a
zero vector.

These inputs are processed through classical fully-
connected layers to yield vectors with a uniform dimen-
sion of 4nq. These vectors are then concatenated through
a bitwise addition operation.
Subsequently, this concatenated vector is partitioned

into four distinct groups, for the four gates of the LSTM
cell. As illustrated in Fig. 3(b-c), each group is directed
to the input of its corresponding quantum layer, symbol-
ized by the QDI square.
The outputs from QDI layers are transformed via clas-

sical fully-connected layers to standardize their dimen-
sions to hdim. Following this, activation functions to-
gether with appropriate for each of the 4 gates transfor-
mations, similar to the classical LSTM, are applied to
the outputs originating from the quantum layers. This
processing culminates in the derivation of the new cell
state C(t) and the hidden state h(t) vectors.
The process operates in a cyclical manner. For each

iteration, the vector from the current time step, x(t), and
the hidden vector from the previous step, h(t− 1), serve
as inputs to the HQLSTM. This iterative process is exe-
cuted as many times as the input width; in our case input
width equals 24. Subsequently, all the hidden vectors are
concatenated to produce a single composite vector. This
vector is then processed through a fully-connected layer
consisting of a single neuron, which outputs a value that
predicts the PV power.
In our first proposed architecture, the HQNN, the

quantum layer functioned as a vanilla layer, where varia-
tional layers were sequentially placed after the encoding
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FIG. 3: The architectures of: (a) Hybrid Quantum Neural Network with VVRQ layer, (b) Hybrid Quantum Long Short-Term
memory, (c) QDI layer used in HQLSTM model, (d) Hybrid Quantum Seq2Seq with QDI layer.

layer. In contrast, in the HQLSTM approach we used a QDI layer [29] as depicted in Fig. 3(b). Here, variational
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layers are positioned multiple times before the encoding
layer (green rectangular) and additionally (purple rect-
angular), within each encoding layer (blue rectangular)
to increase the layer’s expressivity.

D. HQSeq2Seq

Here we present a hybrid version of the Sequence-
to-Sequence (Seq2Seq) model, first introduced in [55].
Seq2seq models are widely used in natural language pro-
cessing tasks [56], where the length of input and output
sequence is not pre-determined and can be variable. We
can also apply the principle of Seq2Seq models to the
power prediction task [57]. That means we can feed the
neural network with time series with arbitrary length and
prompt it to give us the forecast for any hours ahead. In
this problem setting, the longer the input time series is,
the better the model prediction is. The same applies to
the required output length: the shorter it is, the easier it
is for the model to generate the forecast.

The seq2Seq model is a type of encoder-decoder model.
The encoder is given the entire input sequence, which it
uses to generate a context vector. This vector is used
as an input hidden state for the decoder, so it literally
provides it with “context”, according to which the de-
coder will generate the forecast. Thereby, the hidden
dimensions of the encoder and the decoder must match.
The decoder creates the output sequence step by step.
It starts with only one entry: the one which is the last
known. Based on this entry and the context vector, the
decoder generates the second entry and appends it to
the existing one. Now, the obtained two-entry sequence
is once again fed into the decoder to generate the third
entry. Then, the cycle repeats until the length of the
generated sequence matches the length requested by the
user.

We create and compare two models with Seq2Seq ar-
chitecture: the classical Seq2Seq and the hybrid model
called HQSeq2Seq. Both of these models have identical
LSTMs acting as encoders and decoders. In the classi-
cal model, the decoder’s hidden output vector is mapped
to the “Power” value with a single linear layer, while in
HQSeq2Seq it is processed by a QDI layer [29].

In the QDI layer, instead of attempting to use a qubit
for each feature [37], we employed the data re-uploading
technique [38, 58]. Specifically, we work with 4 qubits
and structure them into a lattice of depth 4 (depicted
as a blue big rectangular in Fig. 3(d)). Each of our 16
input features leading to the quantum layer is intricately
encoded within this lattice. The first four features are
mapped onto the initial depth, followed by the subse-
quent features in blocks of four. Encoding these classical
features into the quantum domain, we adopt the “an-
gle embedding” using Rz gate. This operation effectively
translates the input vector into a quantum state that
symbolizes the preceding classical layer’s data.

Entangling variational layers, signified by purple

squares, are interposed between every encoding layer,
ensuring optimal Fourier accessibility. Each variational
layer has two components: rotations governed by train-
able parameters, and sequential CNOT gates. The ro-
tations are implemented by quantum gates that meta-
morphose the encoded input in line with the variational
parameters, while the CNOT operations handle the en-
tanglement of the qubits, facilitating quantum superpo-
sition.
Each lattice depth, represented by each blue square,

encompasses a variational layer (purple square). More-
over, prior to all encoding layers, we introduce a vari-
ational layer (designated by a green square) for en-
hanced model representation. Consequently, the total
weight count in the quantum segment of our network
is 20. In the measurement phase, except for the first
qubit, all qubits execute a CNOT operation targeting
the first qubit, ensuring the Y -measurement spans all
qubits. Therefore, the quantum layer’s output serves as
the power value prediction for a specific hour.
The input size of the encoder and decoder can differ,

which is a substantial benefit. For instance, we can use all
of the 5 features to create a context vector, but request
to generate the forecast for only 1 feature. Exploiting
this advantage, we will feed the Seq2Seq model with a
window of all known features and demand the forecast
only for the “Power” one.
For simplicity’s sake, we will train both models with

fixed input and output length of 96 hours and then try
to vary the length in the testing stage.

E. Training and results

In the study, six distinct models were employed for
PV power prediction based on weather features: HQNN,
MLP, HQLSTM, LSTM, HQSeq2Seq, and Seq2Seq. To
train the models, the mean square error (MSE) was cho-
sen as the loss function:

MSE =
1

N

N∑
n=1

(xn − yn)
2
,

where N is number of predictions, x denotes the pre-
dicted PV power, and y represents the actual PV power
value.
To test the models, in addition to the MSE loss met-

ric, we also used the mean absolute error (MAE), root
mean squared error (RMSE) and variance account factor
(VAF).
Here x⃗ = (x1, x2, . . . , xN ) and y⃗ = (y1, y2, . . . , yN ) rep-

resent vectors of predicted and target PV power values
respectively, where N is the number of predicted values.
All the machine learning simulations for this study

were conducted on CPUs, on the QMware cloud [59, 60]
device. The classical part of our modeling was struc-
tured using the PyTorch library [61], while the quan-
tum part was implemented using the PennyLane frame-
work. Notably, PennyLane provides an assortment of
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(a) (b)

(d) (e)

(c)

(f) (g) (h)

FIG. 4: Results of training and testing of HQNN & MLP and HQLSTM & LSTM models. (a-b) Training and testing history
of models. Solid and dotted lines represent training and testing of models respectively. Filled space shows standard deviation
of models that were averaged over different testing subsets. Histogram for reduced training dataset. (c) Histogram shows
mean MAE and RMSE metrics for our models on testing subset, averaged over different testing subsets. (f-g) Train and test
learning curves for the Seq2Seq and HQSeq2Seq models. (h) Example of the classical and hybrid Seq2Seq models inference on
the testing data. The models get 124 hours of data as an input (before the dashed line) and gives forecast of “Power” into 137
hours ahead (after the dashed line). The solid black line represents the ground truth value of the “Power” feature. MSE/MAE
errors in this particular example are 0.0052/0.0349 for Seq2Seq and 0.0040/0.0292 for HQSeq2Seq.

qubit devices. For our requirements, we selected the
lightning.qubit device which is a custom backend for sim-

ulating quantum state-vector evolution. To compute the
gradients of the loss function relative to each parame-
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Hyperparameters Range Best value
HQNN

number of neurons in
the second layer

8− 128 17

number of qubits 2− 10 8
number of variational layers 1− 10 7

embedding Rx, Ry, Rz Rx

measurement X, Y , Z Z
variational part basic, strongly basic

initial learning rate 1− 1000× 10−4 3× 10−2

MLP
number of neurons in

the first layer
8− 128 32

number of neurons in
the second layer

8− 128 3

number of neurons in
the third layer

8− 128 3

initial learning rate 1− 1000× 10−4 1× 10−2

HQLSTM
number of neurons in

the second layer
3− 25 20

dropout range 0− 99 0.239
number of qubits 2− 5 4

number of variational layers 1− 5 1
number of quantum layers 1− 5 3

initial learning rate 1− 100× 10−3 0.52× 10−2

LSTM
number of neurons in

the second layer
3− 25 21

dropout range 0− 99 0.158
initial learning rate 1− 100× 10−3 0.5× 10−2

TABLE I: The table shows which hyperparameters are being
optimized, the limits of change, and the best values found
during hyperparameter optimization.

ter: for the classical components of our hybrid models,
we employed the widely-recognized backpropagation al-
gorithm [62]; and for the quantum part, we used the ad-
joint method as highlighted in Refs. [63, 64].

1. HQNN & MLP and HQLSTM & LSTM

Both the HQNN and its classical analog, the MLP,
were trained for 20 epochs. In contrast, the HQLSTM
and its classical counterpart, the LSTM, were trained
for over 50 epochs. The Adam optimiser [65] from the
PyTorch framework was used to update the parameters
of the models in order to minimize their loss functions.
The comprehensive training process, accompanied by the
results, is delineated in Fig. 4 and in Table II.

In this study, we employed cross-validation as a funda-
mental technique to assess the performance of our models
across distinct testing subsets. The application of cross-
validation is pivotal to safeguard against potential data
leakage from the training dataset into the testing dataset.
To achieve this, a rigorous approach was adopted wherein
a 24-hour time window, from each side of the subsets, was

Model HQNN MLP HQLSTM LSTM
train, MAE 0.0458 0.0651 0.0382 0.0454
test, MAE 0.0659 0.0887 0.0343 0.0570
train, MSE 0.0059 0.0144 0.0056 0.0054
test, MSE 0.0120 0.0204 0.0058 0.0096
test, RMSE 0.1097 0.1428 0.0743 0.0937

TABLE II: Summary of the results for the proposed models.
In a direct comparison, the HQNN outperforms the MLP in
both training and testing losses, as evidenced across three crit-
ical metrics: RMSE, MAE, and MSE. Notably, the HQNN’s
MSE is 41% less than MLP’s one, which means that HQNN
has more reliable forecasts, despite the fact that it has 1.8
times fewer parameters. At the same time, the quality of
HQLSTM’s on the test dataset is 40% better compared to
LTSM’s one on MAE and MSE metrics, and is 21% better
on RMSE metric, although the first one has less than half
weights. In a broader comparison encompassing all four mod-
els, HQLSTM emerges as the most precise model on all met-
rics, namely on 52% more precise than HQNN having two
times fewer trainable parameters.

systematically excluded from the dataset.
Furthermore, we opted to partition the dataset into

training and testing sets in a 4 : 1 ratio. This strategy
was implemented to promote a comprehensive evalua-
tion of our models, as we carried out model training and
assessment on five distinct data splits. Subsequently, a
meticulous averaging process was employed to consoli-
date the results obtained from these splits, and the mean
values thus derived served as the primary metrics for
inter-model comparisons.
The utilization of cross-validation techniques in our

methodology significantly bolsters the robustness and
reliability of our results, as they diminish the reliance
on specific train-test partitioning, thereby enhancing the
credibility of our findings.
In a head-to-head comparison between HQNN and

MLP, the former exhibits superior performance regard-
ing training and testing losses across three key metrics:
RMSE, MAE, and MSE. Specifically, HQNN surpasses
MLP’s power prediction accuracy by 41% estimated by
MSE loss function and by 26% by MAE loss, all the while
boasting 1.8 times fewer parameters (2266 & 3987).
On juxtaposing HQLSTM with LSTM, the former out-

performs in training and testing loss across all three
aforementioned metrics. Remarkably, HQLSTM’s has
better predictive ability (on 40% better) than LSTM as-
sessed by the MSE and MAE metrics, and it achieves
this with less than half the number of parameters
(1109 & 2857). Moreover, HQLSTMs are more resistant
to overfitting, while classical LSTM suffers from it.
In a broader comparison encompassing all four models,

HQLSTM emerges as the most precise model on all met-
rics, namely on 52% more precise than HQNN, having
two times fewer trainable parameters.
It is worth noting that we performed hyperparameter

optimization technique using the Optuna optimizer [66].
The set of optimized parameters, limits of their variation,
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and best sets of hyperparameters for all our 4 models are
presented in Table I.

Moreover, we scanned external articles that refer to
this dataset and found only one article that solves 1 hour
ahead PV power prediction using neural networks. In
comparison, our HQNN model is better than the model
from the external article according to VAF metrics by
40% (91&65).

Further, to confirm that hybrid models train better
including on a smaller dataset, an additional experiment
was conducted, wherein the volume of training data was
intentionally reduced. The results are shown in Figure 4.
The hybrid models performed better with less data, hav-
ing fewer losses and better prediction capabilities than
classical models.

2. HQSeq2Seq & Seq2Seq

After preprocessing the dataset, which is described in
the Section IIA, it spanned 12775 hours from 3/5/12
4:55 AM to 8/19/13 10:00 AM for training, and 3194
hours from 8/19/13 11:00 PM to 12/30/13 00:00 AM for
testing.

Although models are capable of being trained on se-
quences of arbitrary lengths, we chose to use sequences
of fixed 96 hours for simplicity. In this case, the en-
coder gets 96 hours of all available features, while the
decoder is asked to extrapolate only the “Power” feature
of the data 96 hours ahead. Training for 15 epochs with
the Adam optimizer (learning rate 0.001) proved to be
enough for the models to converge (Fig. 4 (f-g)). As an
example of inference, we pass the time series of the length
different from 96 into both models and prompt them to
give us a forecast for 137 hours ahead (Fig. 4 (h)). We
can conclude that both models transition from the fixed
sequence length to an arbitrary one quite well. It may
even be possible to improve these results by introduc-
ing variable-length sequences into the training stage. We
also measured the dependency of test loss on the size of
the training dataset for Seq2Seq and HQSeq2Seq, shown
in Fig. 4 (e). As one can see, the test RMSE loss of the
hybrid model is less for any size of training data, which
proves that the hybrid model shows an advantage over
the classical model, including on a trimmed dataset.

III. DISCUSSION

In this work we introduced three hybrid quantum ap-
proaches to time series prediction task. The first two
models allow one to predict the power of solar panels for
1 hour ahead, using weather features for the previous 24
hours. The third model allows to predict a longer-term
user-defined forecast, showcasing the versatility of our
models for various planning tasks.

The first approach is the HQNN, a combination of clas-
sical fully connected layers and quantum layer, which is

a VVRQ, analog of classical fully-connected layer. We
compared this hybrid model with its classical counter-
part, MLP, and demonstrated that, even though HQNN
has 1.8 times less variational parameters, it has 41% bet-
ter predictive ability, estimated by MSE error.

The second approach is HQLSTM, a hybrid quantum
analogue of classical LSTM. Here, QDI layer is inserted
into each gate of the LSTM cell. This approach pro-
vides a 40% improvement in prediction using the MAE
and MSE metrics comraped to its classical counterpart.
Our proposed architecture is a unique combination of
classical and quantum layers, which we believe to be
a breakthrough in solving time series prediction tasks.
Comparing HQNN and HQLSTMmodels, the second one
was better on 52% than HQNN having two times fewer
weights.

The third approach is hybrid Seq2Seq model, a classi-
cal Seq2Seq model, consisting of 2 LSTMs with quantum
layer at the end. This approach allows one to predict
the PV power not only for an hour ahead, but for any
number of hours ahead, without knowing the weather
features in advance. The addition of the proposed QDI
layer improves the accuracy of the predictions, reducing
the MAE error by 16% compared to a purely classical
Seq2Seq model. Our proposed architecture is a unique
combination of classical and quantum layers, which we
believe to be a breakthrough in solving time series pre-
diction tasks.

Also, for all models, we conducted an additional ex-
periment in which our models were trained on a reduced
dataset, and confirmed that hybrid models have better
learning capabilities and have less loss trained on any
amount of dataset compared to their classical counter-
parts. This confirmation can serve as an excellent moti-
vation to use hybrid networks for applications where data
collection is a complex task.

It is worth noting that all parameters are trainable in
our layers; the architecture and hyperparameters were
selected by the Optuna optimizer. Moreover, we com-
pare our models to a paper that solved the same prob-
lem using the same dataset, and demonstrate that our
best HQLSTM is 40% more accurate in predicting power
using VAF metric.

To fully unlock the potential of HQNNs in time se-
ries prediction problem, further research and testing of
models on other datasets is necessary. Also, the devel-
opment of more efficient optimization VQC training and
implementation methods, larger-scale quantum hardware
could lead to even more significant performance improve-
ments.

Furthermore, while this work was done on a public
dataset with an emphasis on hybrid quantum models for
better forecasting performance, the quality and source
of data plays a crucial role in overall effectiveness in the
real world, especially considering weather data. Accu-
rate weather forecast is a crucial input into any high per-
forming and useful PV prediction given its dynamism
and influence on PV output. An interesting area of re-
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search is cloud prediction using satellite and weather data
for geo-locations, directly impacting solar irradiance and
therefore PV output. The added complexity could en-
hance the need for hybrid quantum models to increase
computational efficiency and higher quality forecasts.

To summarize, our developments provide three hy-
brid quantum approaches for time series problems that

demonstrate the possibility of combining classical and
quantum methods. Our proposed models show improved
performance compared to classical models with similar
architecture when using fewer variation parameters. We
believe that these results pave the way for further re-
search in developing hybrid models that leverage the
strengths of both classical and quantum computing.
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