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Abstract

Image recognition is one of the primary applications of machine learning algorithms. Nevertheless, machine learning models
used in modern image recognition systems consist of millions of parameters that usually require significant computational
time to be adjusted. Moreover, adjustment of model hyperparameters leads to additional overhead. Because of this, new
developments in machine learning models and hyperparameter optimization techniques are required. This paper presents
a quantum-inspired hyperparameter optimization technique and a hybrid quantum-classical machine learning model for
supervised learning. We benchmark our hyperparameter optimization method over standard black-box objective functions
and observe performance improvements in the form of reduced expected run times and fitness in response to the growth in the
size of the search space. We test our approaches in a car image classification task and demonstrate a full-scale implementation
of the hybrid quantum ResNet model with the tensor train hyperparameter optimization. Our tests show a qualitative and
quantitative advantage over the corresponding standard classical tabular grid search approach used with a deep neural network
ResNet34. A classification accuracy of 0.97 was obtained by the hybrid model after 18 iterations, whereas the classical model
achieved an accuracy of 0.92 after 75 iterations.

Keywords Hybrid quantum neural networks - Tensor train optimisation - Hybrid quantum machine learning - Hybrid quantum
computing - Hyperparameter optimisation - Image classification - Computer vision and pattern recognition - Machine learning

1 Introduction (2017), which prompted a number of works by other auto-

motive companies Mehta et al. (2019); Ohzeki et al. (2019);

The field of quantum computing has seen large leaps in
building usable quantum hardware during the past decade.
As one of the first vendors, D-Wave provided access to a
quantum device that can solve specific types of optimiza-
tion problems Johnson et al. (2011). Motivated by this,
quantum computing has not only received much attention
in the research community, but was also started to be per-
ceived as a valuable technology in industry. Volkswagen
published a pioneering result on using the D-Wave quan-
tum annealer to optimize traffic flow in 2017 Neukart et al.
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Yarkoni et al. (2021). Since then, quantum annealing has
been applied in a number of industry-related problems like
chemistry Streif et al. (2019); Xia et al. (2017), aviation
Stollenwerk et al. (2019), logistics Feld et al. (2019), and
finance Grant et al. (2021). Aside from quantum annealing,
gate-based quantum devices have gained increased popu-
larity, not least after the first demonstration of a quantum
device outperforming its classical counterparts Arute et al.
(2019). A number of industry-motivated works have since
been published in the three main application areas that are
currently of interest for gate-based quantum computing: opti-
mization Streif et al. (2021); Streif and Leib (2020); Amaro
etal. (2022); Dalyac etal. (2021); Luckow et al. (2021), quan-
tum chemistry and simulation Arute et al. ( 2020); Malone
et al. (2022), and machine learning Melnikov et al. (2023);
Rudolph et al. (2020); Skolik et al. (2021, 2022); Peters et al.
(2021); Alcazar et al. (2020); Perelshtein et al. (2022); Sagin-
galieva et al. (2022); Kordzanganeh et al. (2022). Research
in the industrial context has been largely motivated by noisy
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intermediate-scale quantum (NISQ) devices Kordzanganeh
et al. (2022)—early quantum devices with a small number of
qubits and no error correction. In this regime, variational
quantum algorithms (VQAs) have been identified as the
most promising candidate for near-term advantage due to
their robustness to noise Cerezo et al. (2021). In a VQA, a
parametrized quantum circuit (PQC) is optimized by a classi-
cal outer loop to solve a specific task like finding the ground
state of a given Hamiltonian or classifying data based on
given input features. As qubit numbers are expected to stay
relatively low within the next years, hybrid alternatives to
models realized purely by PQCs have been explored Zhang
et al. (2021); Mari et al. (2020); Zhao and Gao (2019); Dou
et al. (2021); Sebastianelli et al. (2021); Pramanik et al.
(2021); Perelshtein et al. (2022); Rainjonneau et al. (2023);
Sagingalieva et al. (2022). In these works, a quantum model
is combined with a classical model and optimized end-to-end
to solve a specific task. In the context of machine learning,
this means that a PQC and neural network (NN) are trained
together as one model, where the NN can be placed either
before or after the PQC in the chain of execution. When the
NN comes first, it can act as a dimensionality reduction tech-
nique for the quantum model, which can then be implemented
with relatively few qubits.

In this work, we use a hybrid quantum ResNet model to
perform image classification on a subset of the Stanford Cars
dataset Krause et al. (2013). Image classification is an ubiq-
uitous problem in the automotive industry and can be used
for tasks like sorting out parts with defects. Supervised learn-
ing algorithms for classification have also been extensively
studied in quantum literature Havlicek et al. (2019); Schuld
and Killoran (2019); Schuld et al. (2020); Rebentrost et al.
(2014), and it has been proven that there exist specific learn-
ing tasks based on the discrete logarithm problem where a
separation between quantum and classical learners exists for
classification Liu et al. (2021). While the separation in Liu
et al. (2021) is based on Shor’s algorithm and therefore not
expected to transfer to realistic learning tasks as the car clas-
sification mentioned above, it motivates further experimental
study of quantum-enhanced models for classification on real-
world datasets.

In combining PQCs and classical NNs into hybrid quantum-
classical models, we encounter a challenge in searching
hyperparameter configurations that produce performance
gains in terms of model accuracy and training. Hyperparam-
eters can be considered values that are set for the model and
do not change during the training regime and may include
variables such as learning rate, decay rates, choice of opti-
mizer for the model, number of qubits, or layer sizes. Often in
practice, these parameters are selected by experts based upon
some a priori knowledge and trial-and-error. This limits the
search space, but in turn can lead to producing a suboptimal
model configuration.

@ Springer

Hyperparameter optimization is the process of automat-
ing the search for the best set of hyperparameters, reducing
the need for expert knowledge in hyperparameter configura-
tions for models, with an increase in computation required to
evaluate configurations of models in search of an optimum.
In the 1990s, researchers reported performance gains lever-
aging a wrapper method, which tuned parameters for specific
models and datasets using best-first search and cross valida-
tion Kohavi et al. (1995). In more recent years, researchers
have proposed search algorithms using bandits Li et al. (2017),
which leverage early stopping methods. Successive halving
algorithms such as the one introduced in Karnin et al. (2013)
and the parallelized version introduced in Li et al. (2018)
allocate more resources to more promising configurations.
Sequential model-based optimization leverages Bayesian
optimization with an aggressive dual racing mechanism and
also has shown performance improvements for hyperparameter
optimization Hutter etal. (2011); Lindauer and Hutter (2018).
Evolutionary and population-based heuristics for black-box
optimization have also achieved state-of-the-art results when
applied to hyperparameter optimization in numerous com-
petitions for black-box optimization Vermetten et al. (2020);
Bick (1996); Awad et al. (2020). In recent years, a whole
field has formed around automating the process of finding
optimal hyperparameters for machine learning models, with
some prime examples being neural architecture search Elsken
etal. (2019) and automated machine learning (AutoML) Hut-
teretal. (2019). Automating the search of hyperparameters in
a quantum machine learning (QML) context has also started
to attract attention, and the authors of Gémez et al. (2022)
have explored the first version of AutoQML.

Our contribution in this paper is not only to examine the
performance gains of hybrid quantum ResNet models vs.
purely classical, but also to investigate whether quantum-
enhanced or quantum-inspired methods may offer an advan-
tage in automating the search over the configuration space of
the models. We show a reduction in computational complex-
ity in regard to expected run times and evaluations for various
configurations of models, the high cost of which motivate this
investigation. We investigate using the tensor train decompo-
sition for searching the hyperparameter space of the hybrid
quantum neural network (HQNN) framed as a global opti-
mization problem as in Zheltkov and Osinsky (2020). This
method has been successful in optimizing models of social
networks in Kabanikhin et al. (2019) and as a method of
compression for deep neural networks Wang et al. (2021).

2 Results
2.1 Hyperparameter optimization

The problem of hyperparameter optimization (HPO) is
described schematically in Fig. 1(a). Given a certain dataset
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Fig.1 The hyperparameter optimization problem description (a). The tabular methods for hyperparameter optimization: the grid search algorithm

(b) and the tensor train algorithm (c—d)

and a machine learning (ML) model, the learning model
demonstrates an accuracy A(h) which depends on the
hyperparameters /. To achieve the best possible model accu-
racy, one has to optimize the hyperparameters. To perform
the HPO, an unknown black-box function A (k) has to be
explored. The exploration is an iterative process, where at
each iteration the HPO algorithm provides a set of hyperpa-
rameters 4 and receives the corresponding model accuracy
A(h). As aresult of this iterative process, the HPO algorithm
outputs the best achieved performance A(flopt) with the cor-
responding hyperparameters ﬁopt.

The HPO could be organized in different ways. One of
the standard methods for HPO is a tabular method of grid
search (GS), also known as a parameter sweep (Fig. 1(b)).
To illustrate how a grid search works, we have chosen two
hyperparameters: the learning rate (k1) and the multiplica-
tive factor of learning rate (7). They are plotted along the
x-axis and the y-axis, respectively. The color on the contour
shows the accuracy of the model A(h1, hy) with two given
hyperparameters changing from light pink (the lowest accu-
racy) to dark green (the highest accuracy). In the GS method,
the hyperparameter values are discretized, which results in
a grid of values shown as big dots. The GS algorithm goes
through all the values from this grid with the goal of finding
the maximum accuracy. As one can see in this figure, there
are only three points at which this method can find a high
accuracy with 25 iterations (shown as 25 points in Fig. 1(b)).

This example shows that there could be a better tabular HPO
in terms of the best achievable accuracy and the number of
iterations used.

2.2 Tensor train approach to hyperparameter
optimization

Here, we propose a quantum-inspired approach to hyperpa-
rameter optimization based on the tensor train (TT) program-
ming. The TT approach was initially introduced in the context
of quantum many-body system analysis, e.g., for finding a
ground state with minimal energy of multi-particle Hamil-
tonians via density matrix renormalization groups White
(1992). In this approach, the ground state is represented in
the TT format, often referred to as the matrix product state
in physics Cirac et al. (2021). We employ the TT repre-
sentation (shown in Fig. 1(c)) in another way here and use
it for the hyperparameter optimization. As one can see in
Fig. 1(c), the TT is represented as a multiplication of ten-
sors, where an individual tensor is shown as a circle with the
number of “legs” that corresponds to the rank of the tensor.
hi and h, circles are the matrices of n x r dimension, and
{hi};:g_l is a rank 3 tensor of dimensions n x 2. The two
arrows in the Fig. 1(c) illustrate sweeps right and left along
with the TT. This refers to the algorithm described below.
Leveraging the locality of the problem, i.e., a small corre-
lation between hyperparameters, we perform the black-box
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optimization based on the cross-approximation technique
applied for tensors Oseledets and Tyrtyshnikov (2010);
Zheltkov and Tyrtyshnikov (2020).

Similar to the previously discussed GS method, we dis-
cretize the hyperparameter space with TT optimization
(TetraOpt) and then consider a tensor composed of scores that
can be estimated by running an ML model with a correspond-
ing set of hyperparameters. However, compared to GS, the
TT method is dynamic, which means that the next set of eval-
uating points in the hyperparameter space is chosen based on
the knowledge accumulated during all previous evaluations.
With TetraOpt, we will not estimate all the scores A(h) avail-
able to the model. Instead of this, we will approximate A (k)
via TT, referring to a limited number of tensor elements using
the cross-approximation method Oseledets and Tyrtyshnikov
(2010). During the process, new sets of hyperparameters for
which the model needs to be evaluated are determined using
the MaxVol routine Goreinov and Oseledets (2010). The
MaxVol routine is an algorithm that finds an r x r submatrix
of maximum volume, i.e., a square matrix with a maximum
determinant module in an n X r matrix.

Hyperparameters are changed in an iterative process, in
which one is likely to find a better accuracy A(h) after
each iteration and thus find a good set of hyperparame-
ters. Notably, the TetraOpt algorithm requires an estimate
of O(dnr?) elements and O(dnr?) of calculations, where
d is the number of hyperparameters, n is a number of dis-
cretization points, and r is a fixed rank. If one compares it
with the GS algorithm, which requires estimation of O(n¢)
elements, one is expected to observe practical advantages,
especially with a large number of hyperparameters.

The TetraOpt algorithm for the HPO is presented as the
Algorithm 1 pseudocode that also corresponds to Fig. 1(d).
The TetraOpt algorithm can be described with 9 steps:

1. Suppose each of d hyperparameters is defined on some
interval h; € [A™", h***], wherei € [1, d]. One firstdis-
cretizes each of d hyperparameters by defining n points

{hi(D), 1 2), ..., hi ()}

2. Then, we need to choose the rank r. This choice is a trade-
off between computational time and accuracy, which
respectively require a small and a large rank.

3. r combinations of

(), (), - By (DY M
are chosen.
4. Inthe next three steps, we implement an iterative process

called the “sweep right.” The first step of this iterative
process is related to the first TT core evaluation:

@ Springer

Algorithm 1 Tensor train optimization.

1: Accuracy A(l_zopt) =0

2: iswp =1

3: Core =1

4: jswp =1

5: Discretize each of d hyperparameters with n points

6: Randomly choose r combinations of (A2, h3, ..., hg)

7: while isyp < ngyp do

8 while jsw, < 2 do

9: while Core < d do

10: if Core == 1 then

11: Estimate A(ﬁ) of nr elements with all n values of &

12: if A(hopt) < A(h) then

13: A(hopt) = A(h)

14: end if

15: MaxVol

16: Fix corresponding r values of /1

17: else

18: Estimate A(h) of nr? elements for fixed
(hi, ..., hcore—1) with all n values of hcore

19: if A(hopt) < A(h) then

20: A(hop) = A(h)

21: end if

22: MaxVol

23: Fix corresponding r values of (h, ..., hcore)

24: end if

25: Core = Core + 1

26: end while

27: Change index order (hy, ..., hy)

28: Relabel (A1, ..., hg)

29: Core =1

30: jswp = jswp +1

31:  end while

320 jswp =1

330 gwp =dswp + 1
34: end while

e The accuracy of nr elements is estimated with all n
values of the first hyperparameter {/1 (i1)};} Z and for

the r combinations of{h%(j), h%(j), R hb(j)}j:j:

{A(h (), K, R, -
1, e\ J="i1=n (2)
hd(J))}j:Lil:l‘

e In this matrix of size n x r, we search for a submatrix
with maximum determinant module:

=r,i|=r

(ARG, Ry B, RGOV @)

The corresponding r values of the first hyperparam-

eter are fixed {/] (i])}fij.

5. The next step of this iterative process is related to the
second TT core evaluation:

e We fix r values {h%(il)}iiz of the previous step as

well as r combinations {h}(j), ki (j), ..., hé(j)}jz
of the third step. We, then, estimate the accuracy of the



Quantum Machine Intelligence (2023) 5:38

Page50f15 38

nr? elements with all n values of the second hyper-
parameter {1, (i») Zi’f

{Ah{ (1), ha(i2), B3 (), - - W
1, Jj=r,i1=r,ip=n
hd(J))}j:I,ilzl,izzl

e Again, in this matrix of size nr x r, we search for a
submatrix with the maximum determinant module:

{A((R3 (), B3 (Kk)), A, - ., s
nyGNY I,

r combinations {(h%(k), h%(k))}l,z: of the first and
the second hyperparameters are fixed.

6. The d — 1 TT core evaluation:

e We fix  combinations {(h{2(k), h4 2(k), ..., h%~3
(k))}’,gj of the d — 2 TT core as well as » combina-
tions {h;l( j )}jjz of the third step. We, then, estimate
the accuracy of the nr? elements with all n values of
the {ha—1(ia)}'=):

(AR, - G5 (R)),

. o k=ria=n, = ©)
ha—1Ga—1), kDY o =1 =1

e Again, in this matrix of size nr x r, we search for a
submatrix with the maximum determinant module:

(AT B, 8 ),
=r,j=r (7)
HA=L ), Ry

r combinations of {(h{~'(k), h§ ' (k),...,n9"]
(k)}’,jj hyperparameters are fixed.

The end of one “sweep right” is reached.

7. Similar to step 3, we have r combinations of hyperparam-
eters, but they are not random anymore. We next perform
for a similar procedure in the reverse direction (from the
last hyperparameter to the first). The process is called the
“sweep left.”

One first changes the index order:

(0, B R, - B (0~ = relabel

(G CON 10O N (9 A ®)
And then, continues from the fourth step of the TetraOpt
algorithm.

8. A combination of the “sweep right” and the “sweep left”
is a full sweep. We do ngyp full sweeps in this algorithm.

10000 Grid Search

Tensor Train

8000 -

6000 -

4000 A

Runtime,
maximum function evaluations

2000 1

3 4 5 6 7 & 9 10
Problem dimension, d

Fig.2 Tensortrain (TT) and grid search (GS): expected runtime in max-
imum objective function evaluations vs. growth of problem dimension
d

9. During all the iterations, we record it if we estimate a
new maximum score. An expected runtime comparison
of this method against grid search for increasing problem
dimensionality is shown in Fig. 2.

2.3 Benchmarking HPO methods

In order to ascertain the solution quality in our pro-
posed method for hyperparameter optimization, we tested
over three black-box objective functions. These functions
included the Schwefel, Fletcher-Powell, and Vincent func-
tions from the optproblems Python library optproblems
(2022). We ran 100 randomly initialized trails and recorded
average fitness and maximum number of function evalua-
tions in response to the change in the problem size d for
each objective function. We compared grid search (GS) and
tensor train (TT)—both tabular methods (Table 1) for hyper-
parameter optimization. For tensor train and grid search, we
partitioned the hyperparameter ranges with 4 discrete points
per hyperparameter. For tensor train, we set the rank param-
eterr = 2.

2.4 Car classification with hybrid quantum neural
networks

Computer vision and classification systems are ubiquitous
within the mobility and automotive industries. In this article,
we investigate the car classification problem using the car
dataset Krause et al. (2013) provided by Stanford CS Depart-
ment. Examples of cars in the data set are shown in Fig. 3. The
Stanford Cars data set contains 16,185 images of 196 classes
of cars. The data is split into 8144 training images and 8041
testing images. The classes are typically at the combination
of make, model, year, e.g., Volkswagen Golf Hatchback 1991
or Volkswagen Beetle Hatchback 2012. Since the images in
this data set have different sizes, we resized all images to

@ Springer
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Table 1 Table of results comparing HPO methods for Schwefel,
Fletcher-Powell, and Vincent objective functions

HPO method Average fitness d ER
Schwefel

TT —541.76 3 32

GS —541.76 3 64

TT —1083.53 6 80

GS —1083.53 6 4092
TT —1805.89 10 144
GS —1805.89 10 10,000
Fletcher-Powell

TT 5136.64 3 32

GS 4113.78 3 64

TT 23,954.5 6 80

GS 14,295.2 6 4092
TT 78,101.4 10 144
GS 36,890.11 10 10,000
Vincent

TT —-0.232 3 32

GS —0.243 3 64

TT —0.242 6 80

GS —0.243 6 4092
TT —0.241 10 144
GS —0.243 10 10,000

Average fitness values and expected runtimes (ER) in maximum func-
tion evaluations were calculated over 100 runs for varying sizes of
problem dimension d (lower is better). Methods obtaining the best aver-
age fitness are highlighted in bold, with ties broken by lower ER

400 by 400 pixels. In addition, we apply random rotations by
maximum 15°, random horizontal flips, and normalization
to the training data. For testing data, only normalization has
been applied.

ResNet34

Car image,
number of features
per image 3 x 400 x 400

Classical layer

512 = n

Classical layer
Fully-connected layer Fully-connected layer Fully-connected layer
n—nq

We use transfer learning to solve the car classification
problem. Transfer learning is a powerful method for train-
ing neural networks in which experience in solving one
problem helps in solving another problem Neyshabur et al.
(2020). In our case, the ResNet (residual neural network) He
et al. (2015) is pretrained on the ImageNet dataset Ima-
genet dataset (2022) and is used as a base model. One can
fix the weights of the base model, but if the base model is
not flexible enough, one can “unfreeze” certain layers and
make it trainable. Training deep networks is challenging due
to the vanishing gradient problem, but ResNet solves this
problem with so-called residual blocks: inputs are passed
to the next layer in the residual block. In this way, deeper
layers can see information about the input data. ResNet has
established itself as a robust network architecture for solving
image classification problems. We dowloaded ResNet34 via
PyTorch PyTorch (2022), where the number after the model
name, 34, indicates the number of layers in the network.

As shown in the Fig. 3(a), in the classical network after
ResNet34, we add three fully connected layers. Each output
neuron corresponds to a particular class of the classification
problem, e.g., Volkswagen Golf Hatchback 1991 or Volk-
swagen Beetle Hatchback 2012. The output neuron with the
largest value determines the output class. Since the output
from the ResNet34 is composed of 512 features, the first fully
connected layer consists of 512 input neurons and a bias neu-
ron and n output features. The second fully connected layer
connects n input neurons and a bias neuron with ng output
features. The value of n and ¢ can vary, thus changing the
number of weights in the classical network. Since the net-
work classifies k classes in the general case, the third fully
connected layer takes ng neurons and a bias neuron as input
and feeds k neurons as output.

In the hybrid analog as shown in Fig. 3(b), we replace
the second fully connected layer with a quantum one. It is

Audi S4 Sedan 2007

Audi TT RS Coupe 2012
VW Golf Hatchback 2012
VW Golf Hatchback 1991
VW Beetle Hatchback 2012

Car model
prediction

Classical layer

nq—k

q repetitions

04 _#2 HY(@)

Yo HX woHZ0eo HER
10) {1 ) Y e HX (e HZwa) HER —-

ResNet34

0

Car image,
number of features
per image 3 x 400 x 400

Classical layer
Fully-connected layer
512 —n

Fig.3 Classical (a) and hybrid quantum (b) ResNet architectures
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worth noting that the number of qubits used for the efficient
operation of the model is initially unknown. The position
of this layer was chosen to be between two classical layers
that can appropriately pre-process the outputs of the ResNet
(the first classical layer) and to post-process the quantum
outputs (the final classical layer). In the quantum layer, the
Hadamard transform is applied to each qubit, then the input
data is encoded into the angles of rotation along the y-axis.
The variational layer consists of the application of the CNOT
gate and rotation along x, y, and z-axes. The number of vari-
ational layers can vary. Accordingly, the number of weights
in the hybrid network can also change. The measurement is
made in the X-basis. For each qubit, the local expectation
value of the X operator is measured. This produces a clas-
sical output vector, suitable for additional post-processing.
Since the optimal number of variational layers (g, depth of
quantum circuit) and the optimal number of qubits n are not
known in advance, we choose these values as hyperparame-
ters. A thorough analysis of the quantum circuit for n = 2 is
given in the Appendix, where three approaches are employed
to measure the efficiency, trainability, and the expressivity of
this quantum model.
We use the cross-entropy as a loss function

k
| = —Zyclogpc 9
c=1

where p. is the prediction probability, y. is 0 or 1, deter-
mining respectively if the image belongs to the prediction
class, and k is the number of classes. We use the Adam opti-
mizer Adam optimizer (2022); Kingma and Ba (2014) and
reduce the learning rate after several epochs. Note that in
the simulation of the HQNN we assumed a precise (infinite-
shots) and noise-free simulator, as investigating the effects of
these sources of noise fell outside the scope this work. There
is no one-size-fits-all rule of how to choose a learning rate.
Moreover, in most cases, dynamic control of the learning
rate of a neural network can significantly improve the effi-
ciency of the backpropagation algorithm. For these reasons,

we choose the initial learning rate, the period of learning
rate decay, and the multiplicative factor of the learning rate
decay as hyperparameters. In total, together with number of
variational layers and number of qubits, we optimize five
hyperparameters presented in Table 2 to improve the accu-
racy of solving the problem of car classification.

2.5 Simulation results

We next perform a simulation of the hybrid quantum ResNet
described in the previous section. The simulation is com-
pared to its classical analog, the residual neural network, in
a test car classification task. Because of the limited number
of qubits available and computational time constraints, we
used a classification between two classes, Volkswagen Golf
Hatchback 1991 and Volkswagen Beetle Hatchback 2012, to
compare the classical and hybrid networks fairly. In total,
we used 88 testing images and 89 training images. Both the
HQNN model and the classical NN model were used together
with the GS and TetraOpt methods for hyperparameter opti-
mization. All machine learning simulations were carried out
in the QMware cloud, on which the classical part was imple-
mented with the PyTorch framework, and the quantum part
was implemented with the <basiq> SDK QMware (2022);
Perelshtein et al. (2022); Kordzanganeh et al. (2022). The
results of the simulations are shown in Fig. 4.

Figure 4(a) shows the dependence of accuracy on the num-
ber of HPO iterations on the test data, where one iteration of
HPO is one run of the model. Green color shows the depen-
dence of accuracy on the number of iterations for the HQNN,
and blue color shows for the classical NN. As one can see
from Fig. 4(a), TetraOpt works more efficiently than GS and
in fewer iterations finds hyperparameters that give an accu-
racy above 0.9. HQNN with TetraOpt (marked with green
crosses) finds a set of hyperparameters that yields 97.7%
accuracy over 18 iterations. As for the GS (marked solid
green line), it took 44 iterations to pass the threshold of 98%
accuracy.

Table2 The table shows which

hyperparameters are being Hyperparameter Label Range Hybrid HPO values Classical HPO values
optimized, their labels, limits of Number of qubits n 4-16 13 5
change, and the best values
found during HPO number of neurons
Depth of quantum q 1-5 4 X
circuit
Number of neurons nq 4 —80 X 80
Initial learning rate %) 1 —10x 5% 1074 5% 1074
1074
Step of learning rate o 1-8 8 5
Multiplicative factor of o 0.1— 0.1 0.2
earning rate decay 0.2
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Fig. 4 (a) Dependence of accuracy on the number of iterations HPO.
TetraOpt for the hybrid model found a set of hyperparameters that gives
an accuracy of 0.852 after 6 iterations, 0.977 after 18 iterations, for the
classical model found 0.977 after 6 iterations. Grid search for the hybrid

TetraOpt finds in 6 iterations a set of hyperparameters for
the classical NN, which gives an accuracy of 97.7%, which is
the same as the accuracy given by the set of hyperparameters
for the HQNN that found in 18 iterations. As for the GS, it
is clear that the optimization for the HQNN works more effi-
ciently than for the classical one. And the optimization of the
HQNN requires fewer iterations to achieve higher accuracy
compared to the optimization of the classical NN. A possible
reason is that a quantum layer with a relatively large number
of qubits and a greater depth works better than its classical
counterpart.

The best values found during HPO are displayed in
Table 2. The quantum circuit corresponding to the optimal
set of hyperparameters has 52 variational parameters, lead-
ing to a total of 6749 weights in the HQNN. In the classical
NN, there are 9730 weights. Therefore, there are significantly
fewer weights in a HQNN compared to a classical NN. Nev-
ertheless, as can be seen from the Fig. 4(b), the HQNN,

Volkswagen Golf Hatchback 1991

Fig.5 Examples of test car images that were correctly classified by the
hybrid quantum ResNet

@ Springer
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epochs

model found a set of hyperparameters that gives an accuracy of 0.989
after 75 iterations, for the classical model found 0.920 after 75 itera-
tions. (b) Dependence of accuracy on the number of epochs with the
found optimal set of hyperparameters

with the hyperparameters found using the GS, reaches the
highest overall accuracy (98.9%). Figure 5 shows examples
of car images that were classified correctly by the HQNN
model. The HQNN with an optimized set of hyperparame-
ters achieved an accuracy of 0.989.

3 Discussion

We introduced two new ML developments to image recog-
nition. First, we presented a quantum-inspired method of
tensor train decomposition for choosing ML model hyper-
parameters. This decomposition enabled us to optimize
hyperparameters similar to other tabular search methods,
e.g., grid search, but required only O(dnr?) hyperparam-
eter choices instead of O(n) in the grid search method.
We verified this method over various black-box functions
and found that the tensor train method achieved comparable
results in average fitness, with a reduced expected run time
for most of the test functions compared to grid search. This
indicates that this method may be useful for high dimensional
hyperparameter searches for expensive black-box functions.
Future work could investigate using this method in com-
bination with local search heuristic, where the tensor train
optimizer performs a sweep over a larger search space within
a budget and seeds another optimization routine for a local
search around this region. This method could also be applied
to the B/n problem for successive halving algorithm by
decomposing the search space to find the optimal ratio of
budget B over configurations n. Future work could investi-
gate these applications in more detail.

Second, we presented a hybrid quantum ResNet model for
supervised learning. The hybrid model consisted of the com-
bination of ResNet34 and a quantum circuit part, whose size
and depth became the hyperparameters. The size and flexi-
bility of the hybrid ML model allowed us to apply it to car
image classification. The hybrid ML model with GS showed
an accuracy of 0.989 after 75 iterations in our binary clas-
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sification tests with images of Volkswagen Golf Hatchback
1991 and Volkswagen Beetle Hatchback 2012. This accuracy
was better than of a comparable classical ML model with GS
showed an accuracy of 0.920 after 75 iterations. In the same
test, the hybrid ML model with TetraOpt showed an accuracy
of 0.977 after 18 iterations, whereas the comparable classi-
cal ML model with TetraOpt showed the same accuracy of
0.977 after 6 iterations. Our developments provide new ways
of using quantum and quantum-inspired methods in practical
industry problems. In future research, exploring the sample
complexity of the hybrid quantum model is of importance,
in addition to generalization bounds of the quantum mod-
els similar to research in Caro et al. (2022). Future work
could also entail investigating state-of-the-art improvements
in hyperparameter optimization for classical and quantum-
hybrid neural networks and other machine learning models
by leveraging quantum-inspired or quantum-enhanced meth-
ods.

Appendix A: Quantum Circuit Analysis

In this section, we critically analyze the parameterized quan-
tum circuit (PQC) suggested in Section?2.4.

There are many methods to do this and in this paper we
focus on three of them:

e ZX calculus circuit-reducibility as suggested in Coecke
and Duncan (2008)

e Fisher information degeneracy and the effective dimen-
sion as suggested in Abbas et al. (2021)

e Fourier accessibility, first suggested in Schuld et al.
(2021)

We see that the circuit in use is optimally chosen based on
these measures.

Appendix A.1: ZX calculus
ZX calculus is a graphical language that can reduce a circuit

to an identical, see Coecke and Duncan (2008). To reduce a
circuitusing ZX calculus we need to first convert the quantum

circuit to a ZX graph. Then we can use the ZX calculus rules,
suggested in van de Wetering (2020), to reduce this graph to
a more fundamental version of itself. We then convert the
reduced ZX graph back to a new and reduced circuit. If a cir-
cuit cannot be reduced, we shall refer to it as ZX-irreducible.
A circuit of this type can use the maximum potential of the
trainable layers and includes no fully redundant parame-
ters. Our circuit produces the graph in Fig.6. None of the
parameterized gates shown in this figure can commute or
be simplified, and therefore our circuit is ZX-irreducible.
Specifically, the following two crucial steps were taken to
make sure that this is the case:

e Due to the final Rz rotation gates, measurements were
made in the X-basis to make sure these gates were not
made redundant, and

e Ry rotation gates were employed to prevent the non-
commutativity through the CNOT gates.

Although ZX-irreducibility is a crucial condition to look
for, further analysis is required to understand the expressivity
and the efficiency of the circuit.

Appendix A.2: Fisher information and effective
dimension

We can summarize supervised machine learning as creating
a hypothesis model hg(X) from a labelled dataset (x, y) €
X x Y that could produce an approximation to the distribution
of the data in nature, f(x). We are provided with a subset of
S labelled data points from this distribution and we need to
optimize our hypothesis model to be a representative model
of f(X).

To do this, we need to maximize the probability that given
the model parameters 6 and some data point x we get the asso-
ciated label y. This conditional probability can be written as
P(y|x, 0). However, the latter notion assumes a uniform dis-
tribution over X', and to be more accurate we need to consider
the joint probability, P(y, x|@). The joint probability distri-
bution can be empirically evaluated for any value of 6 for a
given subset of data. Thus, we can think of the joint proba-
bility as an N-dimensional manifold where N is the number

Fig.6 The only changes we could make to this circuit are fusing some
constant spiders, which we will need to re-introduce later for circuit
efficiency. Additionally, measurements are in the X-basis, so all varia-
tional parameters to the right of the last CNOT only contribute to the

qubit that they are applied to. This is particularly evident in Fig. 10(a)
and (e), where there is only one CNOT in the system. This allows us
to assign a variable specific to each qubit which we can use to tune the
output of each qubit independently
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of trainable parameters N = |@|. The Fisher information
matrix F(6) can define a metric over this manifold Abbas
et al. (2021); Amari (1998)

F(0) = Ey, ,)[ Vg log (P)Vglog(P)"]. (10)

This metric can be diagonalized to produce a locally
Euclidean tangential basis whose diagonal values provide the
square of the gradient of our joint probability in this diago-
nalized basis. These values can be obtained by calculating the
eigenvalues of the Fisher matrix. To understand the useful-
ness of this insight, we need to understand the issue of barren
plateaus in quantum neural networks (QNNs). McClean et al.
(2018) suggested that for a chosen QNN, the expectation
values of the gradients are zero and their variances decrease
exponentially with the number of qubits. This combination
means that QNNs suffer from vanishing gradients, a phe-
nomenon known as the barren plateau problem. We must
avoid these barren plateaus by ensuring our network can pro-
duce a spectrum of gradients rather than a large number of
zeros. We showed that the eigenvalues of the Fisher informa-
tion matrix produced the square of our gradients. Therefore,
by calculating the eigenvalue spectrum of Fisher matrices
for many realizations of # we can investigate the trainabil-
ity - the robustness of the QNN against barren plateaus - of
the specific 2-qubit network. It is noteworthy that the bar-
ren plateau phenomenon scales exponentially with the qubit
count and that this section of the analysis is only applicable
to the 2-qubit case. A network with high trainability would
have a lower eigenvalue degeneracy about zero.

Berezniuk et al. (2020) takes this concept a step further
by assuming that - under some weak conditions - the Fisher
information matrix above is equal! to the Hessian matrix
defined as
H@) = ]E{xiyyi}[VTV log(P)], (11)
which is the matrix of second-order derivatives. Then, it uses
this equivalence to derive a complexity measure that is depen-
dent on the size of the subset S. This measure of complexity
is defined as the effective dimension and was first practically
explored in Abbas et al. (2021) to show that QNNs can have a
higher expressivity than classical machine learning models.
The latter work defines the effective dimension as

log (V) I \/det (idy + 525 F(0)>d0)

yS
log <2n10gS)

)

dy s(Meg):=2
(12)

! It is noteworthy that this idea is sometimes contested in the statistical
learning literature Thomas et al. (2020); Kunstner et al. (2020).

@ Springer

where Vg = |, © d0 is the volume of the parameter space, y
is a constant in (0, 1] introduced in Abbas et al. (2021), and
F (@) is the normalized Fisher matrix defined as

Vo

Fi @) =N F )0

Fij(0). (13)

We can calculate the Fisher information for the specific
hyperparameter settings of our circuit. Specifically, we con-
sider a 2-qubit variation of this circuit with the number
of trainable layers varying from 1 to 20. Following the
lead of Abbas et al. (2021), we create a Gaussian dataset
x ~ N(u =0, 02 = 1) and evaluate the joint probability by
overlapping the specific resultant state with the state of our
QNN

P(y,x10) =|(y|¥(®0,%)) (14)

where y is the output state. Note that this has to be averaged
over all possible y and x. This way, we can calculate the
empirical Fisher information for any 6. Figure 7 shows the
mean-square, normalised Fisher matrix for 1000 data points
and 100 uniform weight realizations 6 € (0, 27 ]. Observing
the diagonal elements, it seems that none of the parameters
is especially dominant or redundant. A further test would be
to look at the Fisher eigenvalue spectra shown in Fig. 8. We
can see that the degeneracy of the eigenvalues around zero
increases for a higher number of trainable layers.

Finally, to obtain the effective dimension, we can evaluate
the integral in Eq. 12 by taking the average of 100 Fisher real-
izations. Figure 9(a) shows the effective dimension against
the number of trainable layers of our network. Increasing the
number of trainable layers increases the effective dimension.
This is unsurprising as we defined the effective dimension as
a measure of expressivity and we expect that adding train-
able layers would increase the expressivity of the network.
However, we also see that adding trainable layers could yield
diminishing returns at higher values.

Additionally, it was shown in Larocca et al. (2021) that
certain QNNs can become over-parameterized and exhibit
lowered parameter efficiency. This was quantified by find-
ing the parameterization for which, at least at one point in
the loss landscape, any added parameter would leave the
rank of the Fisher information matrix unchanged - in other
words, the rank of the Fisher matrix becomes saturated for
an over-parameterized circuit. Examining Fig.9(b), we see
the FIM rank of the circuit increases linearly with the num-
ber of trainable parameters and then plateaus at 6 trainable
layers, reaching a maximal rank of » = 12. This means that
although the effective dimension seems to increase beyond
this point, but the circuit is saturated and there is no further
increase in expressivity.
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Fig.7 The square-averaged normalized Fisher matrices. The diagonals of these matrices show that the quantum circuit distributes the gradients to
all trainable parameters and there is no evident single-parameter dominance
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Fig. 8 The normalized histogram of the Fisher eigenvalue spectra.
Degeneracy about zero means that a smaller portion of the parame-
ters is effectively driving the training, i.e. a lower trainability. (a) has
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ing the number of trainable layers we decrease the trainability of the
model. We see in Fig. 9 that this decrease in trainability is accompanied
by an increase in model expressivity, presenting a trade-off for model

Fig.9 (a) shows that the effective dimension increases with the number of trainable layers, and (b) illustrates the limit of over-parameterization of
the circuit. The colored points light blue, navy, and green correspond to the circuits with 1, 10, and 20 trainable layers, respectively
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Fig. 10 The Fourier accessibility of our circuit when employed for two
features. Note that/; is only shown to span the positive half of its indices
and this is due to the symmetry of these coefficients ¢;, 1, = c—j;,—1,. In
all figures, we see that the circuit is not able to change the offset coeffi-
cient. This sets a constraint but also increases our accessibility because
at a maximum the amplitude of the Fourier output cannot exceed 1 (as
the expectation value of our circuit needs to remain between -1 and 1).
Figures (a) and (e) respectively show the output of the first and the sec-

These analyses signify a trade-off between trainability,
determined by the eigenvalue spectra in Fig.8, and the
expressivity quantified by the effective dimension and upper-
bound by the maximal rank.

Appendix A.3: Fourier accessibility

Schuld et al. (2021) showed that a QNN that uses angle-
embedding® produces a truncated Fourier series of degree
L. This degree is dependent on the number of encoding rep-
etitions employed in a QNN, a strategy first employed in
Pérez-Salinas et al. (2020). Furthermore, Schuld et al. (2021);

2 Schuld (2021) provided expressivity analysis for different angle
embedding strategies.
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ond qubits when only one trainable layer is implemented. In this case,
the associated qubit has an asymmetric advantage in accessibility. We
also see that in this case, the phases of our coefficients remain fixed.
Both of the mentioned issues can be improved by adding trainable lay-
ers, and Figs. (d) and (h) corroborate this statement. Note that this does
not show the full extent of Fourier accessibility as a complete investi-
gation would also look into the inter-dependence of these coefficients,
but that lies outside the scope of this work

Kordzanganeh et al. (2021) showed that for a multi-feature
setting we get a multi-dimensional truncated Fourier series.
For a two-feature setting, we get

fO,%) = (Y0, ) M|y, x)) (15)
Ly Lo

fO.x)=>" > 2cplcosix +hx
li=—L1 h=—L»
—arg(ciy 1)), (16)

where | (0, x) is the quantum state of the system after
encoding and variational layers, M is the measurement gate,
and L and L; are the number of encoding repetitions of
the first and the second feature respectively. The complex
coefficients c;, ;, determine the amplitude and the phase of
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each Fourier term. These coefficient depend only on the vari-
ational gates, and so, our accessibility to a full Fourier series
is limited by how these variational gates span the Fourier
space. We can investigate a specific subset of our networks
with 2 features and a single encoding repetition. This means
that our circuit has L1 = L, = 1. Thus, we can set up the
circuit and randomly realize the weights many times to assess
the Fourier accessibility of the circuit. Figure 10 shows the
Fourier accessibility of our network for 100 uniform realiza-
tions of weights 6 € [0, 27)N. It is evident that increasing
the number of trainable layers improves the Fourier accessi-
bility of the QNN. Furthermore, we can see that to have an
unimpeded network we need at least 3 layers of variational
gates.

Appendix A.4: Summary

In this analysis, we assessed the feasibility of the chosen
quantum circuit and looked at three approaches for analyz-
ing its effectiveness: ZX-reducibility, Fisher information, and
Fourier analysis. In Appendix A.1 we proved that there are no
redundant parameters in the circuit caused by commutation
of the quantum gates and that certain weights are reserved for
independent contribution to each qubit. Then, in Appendix
A.2 we showed that none of the parameters dominated the
training and that by increasing the number of trainable layers,
the trainability and the complexity of our model respectively
decreased and increased. The increase in model complexity
stopped at 6 layers, where we showed that the rank of the
Fisher information matrix was saturated and any additional
parameterization would be futile. Finally, in Appendix A.3
we used the theoretical findings of Schuld et al. (2021) to
show that for a 2-qubit version of our network we at least
needed 3 layers of variational gates to represent the full
Fourier landscape.
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