
A Supervised Hybrid Quantum
Machine Learning Solution to
the Emergency Escape Routing
Problem

Machine learning

By Terra Quantum AG

terraquantum.swiss 2023

A supervised hybrid quantum machine learning solution
to the emergency escape routing problem

Nathan Haboury,1 Mo Kordzanganeh,1 Sebastian Schmitt,2 Ayush Joshi,1 Igor

Tokarev,1 Lukas Abdallah,1 Andrii Kurkin,1 Basil Kyriacou,1 and Alexey Melnikov1

1Terra Quantum AG, Kornhausstrasse 25, 9000 St. Gallen, Switzerland
2Honda Research Institute Europe GmbH, Carl-Legien-Straße 30, 63073 Offenbach am Main, Germany

Managing the response to natural disasters effectively can considerably mitigate their devastating
impact. This work explores the potential of using supervised hybrid quantum machine learning to
optimize emergency evacuation plans for cars during natural disasters. The study focuses on earth-
quake emergencies and models the problem as a dynamic computational graph where an earthquake
damages an area of a city. The residents seek to evacuate the city by reaching the exit points where
traffic congestion occurs. The situation is modeled as a shortest-path problem on an uncertain and
dynamically evolving map. We propose a novel hybrid supervised learning approach and test it on
hypothetical situations on a concrete city graph. This approach uses a novel quantum feature-wise
linear modulation (FiLM) neural network parallel to a classical FiLM network to imitate Dijkstra’s
node-wise shortest path algorithm on a deterministic dynamic graph. Adding the quantum neural
network in parallel increases the overall model’s expressivity by splitting the dataset’s harmonic
and non-harmonic features between the quantum and classical components. The hybrid supervised
learning agent is trained on a dataset of Dijkstra’s shortest paths and can successfully learn the
navigation task. The hybrid quantum network improves over the purely classical supervised learn-
ing approach by 7% in accuracy. We show that the quantum part has a significant contribution
of 45.(3)% to the prediction and that the network could be executed on an ion-based quantum
computer. The results demonstrate the potential of supervised hybrid quantum machine learning
in improving emergency evacuation planning during natural disasters.

I. INTRODUCTION

Natural disasters like earthquakes can result in
devastating effects, including loss of life and prop-
erty damage [1, 2]. Emergency evacuation proce-
dures are critical in such scenarios, and optimiz-
ing these procedures is essential for saving lives
[3]. One of the most common modes of trans-
portation during emergency evacuations is cars,
and it is important to ensure that the routes
taken by these vehicles are safe and efficient. The
standard road network, however, can be heav-
ily affected by earthquakes through dynamic ef-
fects like land deformation, collapsing buildings
or debris [4–8]. Such effects can be modelled and
applied in traffic simulation using sophisticated
probabilistic models [9, 10]. Using such models,
a complete solution for medical rescue, including
route planning, which considers collapsed build-
ings, was proposed in [11]. This study, however,
excludes the consideration of traffic capability or
capacity due to the challenges involved in ob-
taining post-earthquake travel data. The central
challenge of optimization-based methods [12–16]
is the complexity of large-scale problems, in par-
ticular on evolving (dynamic) networks [17].
Dijkstra’s algorithm effectively finds the optimal
path on a static graph, and while algorithms
like A* [18] might offer faster alternatives, Dijk-
stra’s is the only one with an optimality guaran-
tee [19]. However, this algorithm struggles to find
the shortest path in an evolving and uncertain
situation. Therefore, it is necessary to adapt the

algorithm for graphs with dynamically changing
edge weights by rerunning it every time the graph
is modified. We refer to this as the node-wise
Dijkstra’s algorithm. Furthermore, Dijkstra’s al-
gorithm (node-wise or otherwise) requires global
knowledge of the graph. This would require accu-
rate, up-to-date graph information, which is not
always feasible to obtain in reality, as pointed
out in [11]. In particular, in this problem, this
information would require perfect evolving traf-
fic information at each time. This impracticality
incentivizes a solution that uses only local infor-
mation and is robust to unreliable traffic data in
the graph. We introduce a hybrid quantum ma-
chine learning approach that only requires local
information and aims to mimic the node-wise Di-
jkstra’s algorithm in terms of path quality [19, 20]
on a dynamic graph.

Applying quantum technologies to machine learn-
ing has shown much potential in recent years [21–
26]. Hybrid quantum machine learning tech-
niques, which combine quantum computing and
classical machine learning, have emerged as
promising approaches to tackle industrial prob-
lems [27–32]. This paper explores the potential
of hybrid quantum machine learning for optimiz-
ing emergency escape plans for cars during natu-
ral disasters. The study aims to additionally pro-
vide a general blueprint for using hybrid quantum
machine learning for an industrial-scale problem
by including analyses to address the circuit effi-
ciency and the quantum processing unit (QPU)
integration.

ar
X

iv
:2

30
7.

15
68

2v
1

 [
qu

an
t-

ph
]

 2
8

Ju
l 2

02
3

2

We use supervised learning (SL) and train on de-
cisions of the node-wise Dijkstra’s algorithm in a
simulated earthquake scenario. The focus is on
the dynamic environment with evolving natural
disaster and where the traffic builds up at the
city’s exit locations.
For this case, we demonstrate the potential of hy-
brid quantum machine learning in improving the
efficiency of emergency evacuation plans during
natural disasters. Sec. II outlines the problem
statement, first in general, and then models it by
creating an evolving environment as a dynamic
computational graph in Sec. II C. In Sec. III, we
describe the SL approach, the specifics of the hy-
brid machine learning model used, and the re-
sults obtained. Sec. IV provides a comprehensive
practical and theoretical analysis of the quantum
model, its contribution to the inference, prospects
of QPU integration, and model efficiency. The
latter was subdivided into three types of analysis
– ZX calculus, Fourier embedding analysis, and
Fisher expressivity – all of which were considered
when developing the final hybrid model. Finally,
Sec. V summarizes the results.

II. THE EMERGENCY ESCAPE
ROUTING PROBLEM

The research objective of the problem is to de-
velop an effective strategy for rapid evacuation
of a city during emergencies such as earthquakes,
fires, or floods. Cars are considered a form of
transportation to exit the city. Hence traffic con-
gestion has to be bypassed. This study focuses
on earthquake emergencies.

A. Problem Setting

The emergency escape routing problem is consid-
ered for a specific map depicted in Fig. 1(a). On
the map, there are several predefined exit loca-
tions where all traffic should go to. Additionally,
there is one earthquake area. The traffic flow
nearby the exit points increases over time, result-
ing in higher travel times in this area. In addi-
tion, it is assumed that an earthquake constantly
affects roads after it occurs, increasing travel time
in its vicinity. Each car has access to the result-
ing up-to-date traffic information for its immedi-
ate surroundings. Depending on the current traf-
fic, a car can change its route planning at every
time step. A car is considered evacuated when it
reaches an exit point, leaving the city region. The
objective is to obtain a route for evacuating cars,
which minimizes travel time. Given the current
location of a car, its respective optimal evacua-
tion route to an exit point leaving the city region

should be found.

B. Map Data Source and Preparation

The ultimate goal is to solve the routing prob-
lem on examples of real-world cities. This is be-
cause some design logic is used in city layouts,
intended to be captured in our model. Using the
Python OSMnx package [33], any selected region
of a map can be converted into a graph that repre-
sents a realistic city or regional scenario. Fig. 1(a)
shows an example of such a selected map region,
where the resulting graph is shown in Fig. 1(b),
with nodes as dots representing intersections and
edges as lines representing street segments. The
resulting undirected graph has 357 nodes and 549
edges. The minimum and maximum node degree
is two and five, respectively. Each edge of the
graph represents a road segment and has a weight
reflecting the travel time along that segment.
The graph data includes the speed limit for most
streets, depending on the road type. For streets
where this is missing, a nominal value can be
added. The travel time is calculated using the
speed limit and road length attributes. The travel
time down a given road is randomly sampled from
this nominal value based on a Gaussian distri-
bution. This can be used to simulate changing
traffic conditions. Exit points are sampled uni-
formly at some strategic places on the graph, e.g.
exterior of the city/village and close to major
highways. The graph will evolve around the exit
points, where we simulate traffic evolution. In
addition to the exit point, an earthquake also af-
fects the graph. In Sec. II C, we explain how these
changes affect the graph.
A dataset of many problem instances (graphs
with different conditions) is generated. For each
instance, we have a different epicenter with ran-
dom coordinates. The starting point also is cho-
sen randomly for each instance. Three exit points
are defined for the chosen map of the Furubira re-
gion. For each instance, one of these is randomly
chosen as exit points. Fig. 1(c) is an example of
a path found using Dijkstra’s algorithm. The al-
gorithm will return the shortest path for a given
starting node for a weighted graph.

C. Mathematical Problem Abstraction

This section proposes a mathematical model for
the effects of an earthquake and traffic flows
nearby exit nodes defined in Section IIA. The
earthquake initially has a static impact by in-
creasing the edge weights, i.e. travel times, at the
beginning of the simulation. After that, it has an
ongoing dynamic effect, increasing nearby edge

3

Convert map into graph

Exit

Start

Furubira Exit

Exit

Earth
quake

Exit

Exit

Exit

Earth
quake

Find shortest path

FIG. 1: The mathematical abstraction of the emergency escape routing problem during an earthquake. The
map of Furubira was investigated by converting it to a computational graph. Each node represents a crossroad
where a decision on the direction is required. The three exit points on the map are expected to produce
traffic congestion. To model this, we created three expanding concentric circles that increasingly impacted the
edges around them. We also modeled a dynamic earthquake that had affected an area centered around an
epicenter. The description of the problem comprises navigating this dynamic graph to the closest exit point in
a time-efficient manner.

weights, while the area of effect also increases
over time. The road segments near the exit nodes
increase the edge weights dynamically while the
car moves from node to node. To define these
mechanisms, the time t is introduced. It starts
with t = 0 and is increased by 1 every time a
node is traveled. It, therefore, equals the cur-
rent total number of steps taken. To simulate
the weight-increasing effects on the graph, three
mechanisms are used. The first mechanism sim-
ulates the initial static effect of the earthquake,
while the second covers its dynamically evolving
effect. The third mechanism simulates the dy-
namics around the exit nodes, i.e. the ongoing
traffic flow. For each step that is taken in the
environment, these three mechanisms update the
weights subsequently as described in Algorithm
1.

Algorithm 1 Subsequent weight update

1: Initialize graph
2: t = 0
3: Update graph weights according to the initial

earthquake effect mechanism
4: repeat
5: Update graph weights according to ongoing

earthquake effect mechanism
6: Update graph weights according to ongoing

traffic effect mechanism
7: Travel to the next node chosen by the model
8: t += 1
9: until Exit node is reached

The first two mechanisms simulate the initial
and ongoing effects of the earthquake, respec-
tively, depending on the earthquake epicenter.
An earthquake epicenter is defined as having
a circular area of influence that increases over
time t. The earthquake’s radius is denoted as
the damage radius, which grows over time as
repi = 0.5+

√
0.0002× t. The algorithm first sim-

ulates the initial earthquake effect and increases
the edge weights once at the time t = 0. Then it
covers the ongoing effect of the earthquake and
increases the edge weights in the area of effect
over time. These increases in the edge weights
depend on the respective Euclidean distance be-
tween the center of the edge and the center of
the effect (exit nodes or the earthquake epicen-
ter). For the earthquake, this distance is denoted
as depi. The shorter this distance, the stronger
the increase. The update function for each edge
weight w for the initial increase is defined as:

w ←

w × 5, if depi ≤ 0.3 repi
w × 2, if 0.3 repi < depi ≤ 0.75 repi
w × 1.3, if 0.75 repi < depi ≤ repi
w, otherwise.

4

FIG. 2: The supervised learning approach to the emergency escape routing problem. The hybrid quantum
neural network (HQNN) trains to imitate the node-wise Dijkstra’s algorithm.

And the subsequent time evolution is given by:

w ←

min{w ×
√
0.003× t+ 1 , 5},

if depi ≤ 0.3 repi
min{w ×

√
0.002× t+ 1 , 4},

if 0.3 repi < depi ≤ 0.75 repi
min{w ×

√
0.001× t+ 1 , 3},

if 0.75 repi < depi ≤ repi
w, otherwise,

where at each step, all w’s are updated and used
as the baseline values for the next step. To sim-
ulate the traffic flow, the third mechanism dy-
namically increases the edge weights near exit
nodes while traveling from the start to the exit
node. Similar to the earthquake simulation, an
exit point has a circular area of effect with radius
rexit. This radius increases over time, and within
the area of effect, all edge weights are increased
as well. Each edge’s increase depends on its Eu-
clidean distance to the exit node coordinates, de-
noted as dexit. The lower this distance, the larger
the increase. The corresponding update function
for each edge weight w is defined as:

w ←

min{w ×
√
0.03× t+ 1 , 5},

if dexit ≤ 0.5 rexit
min{w ×

√
0.02× t+ 1 , 4},

if 0.5 rexit < dexit ≤ 0.75 rexit
min{w ×

√
0.01× t+ 1 , 3},

if 0.75 rexit < dexit ≤ rexit
w, otherwise

with rexit =
√
0.00075× t.

III. SETUP AND METHODS

To solve the emergency escape routing problem,
an SL-based method, shown in Fig. 2, is pro-
posed. It consists of a hybrid quantum neu-
ral network (HQNN) that iteratively chooses the

next node based on the car’s current state and
map. The SL model is trained on a dataset
with labels generated by node-wise Dijkstra’s al-
gorithm. This way, the HQNN approximates Di-
jkstra’s algorithm while only accessing a limited
portion of the map.

A. Data Engineering

The input data fed to the SL approach in Fig. 2
consists of the earthquake coordinates, the start
and destination node coordinates, the adjacent
edges of the current node with their respective
edge weights, which encode the travel time along
each edge. We also add the betweenness central-
ities of each edge.

The edge betweenness centrality is a measure in
network analysis that quantifies the number of
times a particular edge acts as a bridge along
the shortest path between two other nodes. In
the context of the given scenario, it is calculated
based on the original city graph without consid-
ering the impacts of earthquakes or traffic condi-
tions.

Additionally, two heuristic indicators are intro-
duced to represent global information. These are
added to the input data for each adjacent edge
and represent the types of questions that a human
driver might ask when deciding where to navigate
from that node, which are:
1) am I getting close to the destination?
2) am I heading toward the destination?

The answers to the questions are encoded in the
Euclidean distance and cosine distance, respec-
tively, between the current node and the target
node. The Euclidean distance is defined for two
nodes p = (px, py) and q = (qx, qy) as:

d(p, q) =
√

(qx − px)2 + (qy − py)2

5

The cosine distance is:

cos(θ) =
A ·B
∥A∥ ∥B∥

For a node p and a neighbor node q we define A
and B as: A = (qx − px, qy − py) B = (exitx −
px, exity − py).
The input variables for the HQNN model are de-
tailed in Table I. The features 4 to 8 are specific
to each edge and thus are included for each edge
adjacent to the current node in the model input.
Given the maximum node degree in the graph is
5, the total input contains 36 values:

Input = [xepi, yepi, xstart, ystart, xdest, ydest,

xedge1 , yedge1 , w1, e1, d1, c1,

...,

xedge5 , yedge5 , w5, e5, d5, c5]

These comprise features 1 to 3, as well as five
series of features 4 to 8 for each adjacent edge
from Table I. If a node has less than five adjacent
edges, zero padding is employed on the input vec-
tor to extend it to a length of 36 in order to keep
the model input dimension constant.

TABLE I: Model input summary

1) Earthquake coordinates xepi, yepi
2) Start node coordinates xstart, ystart
3) Destination coordinates xdest, ydest
4) End of edge coordinates xedgen

, yedgen
5) Required travel time wn

6) Edge betweenness centrality en
7) Euclidian distance dn
8) Cosine distance cn

B. Model Evaluation Metrics

We evaluate the models based on two metrics.
The first metric characterizes the effectiveness,
which quantifies whether a model can find an es-
cape route, i.e. the probability that the model
succeeds in finding a path from the start to the
exit node in the graph. This is done by sampling
random start and exit node pairs and evaluating
the arrival rate, i.e. the probability of finding a
connecting path between these two nodes as

Arrival rate =
No. instances path found

No. sampled node pairs

The second metric evaluates the path quality and
is called accuracy, which counts the total travel
time along a path relative to the node-wise Dijk-
stra result. The total travel time is calculated as

the sum of all edge weights for a given path, and
thus the accuracy is given by

Accuracy = 1−
∣∣∣∣∣1−

∑
weight path Dij∑

weight path model

∣∣∣∣∣ ,
where path Dij and path model are the set of
edges in the paths of the Dijkstra algorithms and
the learned model, respectively.

C. Hybrid Supervised Learning
Architecture

The choice of machine learning architecture in
this work is driven by the properties of the
dataset. The dataset is produced by simulat-
ing an earthquake at randomized coordinates in
the city and then collecting routing data for each
earthquake simulation. Therefore, the earth-
quake coordinates are the same for each bunch
of routing data. Naively, this can be tackled in
two ways: 1) using conditional neural networks,
where for each earthquake, we train a different
neural network, and 2) by adding the earthquake
coordinates as new features to a slightly larger
neural network. The former is resource-intensive
and unable to generalize to other earthquakes,
whereas the latter suffers when there is a lack
of variability in the data, for example, when the
number of different earthquakes is much smaller
than the total number of routes.
To counteract this, we employ feature-wise linear
modulation (FiLM) neural networks [34] to create
a smooth and trainable conditional network. This
specialized architecture is bifurcated into two pri-
mary components: the FiLM layer, which takes
the earthquake coordinates as input (FiLM fea-
tures), and a traditional neural network segment
for the remaining features.
The FiLM layer plays a vital role in this archi-
tecture, interfacing directly with the penultimate
layer of the standard neural network. It acts
as a modulation agent, conducting element-wise
scaling and shifting operations on the intermedi-
ate representation resulting from the parallel net-
work. In our context, the FiLM layer exploits the
earthquake coordinates and modulates the tradi-
tional neural network layer to guide the predic-
tion of the subsequent routing node.
This modulation mechanism offered by FiLM
assists in curbing the inaccuracy and resource-
intensiveness of the solution if one had chosen
either of the two naive paths. The FiLM layer’s
unique influence on subsequent layers allows for
better incorporation and reflection of contextual
information, such as the earthquake coordinates,
thus enabling a more adaptive and accurate rout-
ing prediction.

6

Feature
map

Feature
map

Variational
circuit

Variational
circuit

Variational
circuit

Variational
circuit

S
ta

rt
/e

n
d
 p

o
in

ts
im

m
ed

ia
te

 n
ei

gh
b
o
u
rs

E
ar

th
q
u
ak

e
co

or
d
in

at
es

S
of

tm
a
x

Target — Next node predicted
from node-wise Dijkstra's

PHN FiLM Model

Quantum Outputs

Linear Combination

Classical Outputs
Weight Updates

*

*

*

*

*

S
ta

rt
/e

n
d
 p

oi
n
ts

im
m

ed
ia

te
 n

ei
gh

b
ou

rs
E

a
rt

h
q
u
a
k
e

co
or

d
in

a
te

s

Hybrid
Model

Outputs

Cross
Entropy

Loss

FIG. 3: A diagrammatic view of the model architectures used in this work. The hybrid supervised learning
approach combines the classical FiLM neural network with a similarly-built quantum neural network. The
former employs FiLM layers for processing the earthquake coordinates by passing these coordinates into two
fully-connected layers. The layers then become multiplicative and additive values for the main body of the
neural network that processes the rest of the features. The quantum network is created similarly, where there
are seven qubits in total, five of which encode the system’s main features, including the features of the start,
current, and end nodes of the path and information about the neighbors. The other two qubits process the
earthquake coordinates using a data reuploading circuit. The latter qubits are then entangled with the main
five, then a trainable layer is added, and finally, the main qubits are measured in the Z basis. These outputs
are combined linearly with the outputs of the classical FiLM neural network to produce the outcome.

Fig. 3 shows the architecture of the HQNN re-
alized as a parallel hybrid network (PHN) [35],
which combines a classical NN and a variational
quantum circuit (VQC). PHN was found to be
a valuable and performant HQNN layer in in-
dustrial applications [28, 31, 32]. In the new
PHN FiLM Model introduced in this work, the
information flows in parallel in both FiLM sub-
models. The hyperparameters of the PHN FiLM
Model architecture are given in Table. II.

The VQC is a parameterized quantum circuit
that takes in the state features and the earth-
quake as input and outputs a list of expected val-
ues of the variational quantum states. The FiLM
inputs are the earthquake coordinates, and the

other features are passed to the main body of
the model - see Table I. This list corresponds to
the likelihood of choosing each of the neighbor-
ing nodes. The circuit’s architecture consists of
two main parts - the FiLM and the main sections.
The FiLM section consists of two qubits and ac-
cepts the earthquake coordinates using data re-
uploading [36–38] using Pauli Z rotation gates.
The encoding gates are repeated five times in the
circuit and interlaced with variational unitaries
built using four sub-layers of Pauli X rotations
and CNOT gates, known as the basic entangler
layer (BEL) [39]. This layer, denoted as U(θ) can
be written as:

7

TABLE II: Model Parameters

General

Batch Size 2000

Input Size (main) 34

Input Size (FiLM) 2

Output Size 5

Scaling Learning Rate 1e-3

Weight Decay 1e-5

Epochs 100

Optimizer Adam

Loss function CE

Classical

Start Learning Rate Scaling Factor 1

End Learning Rate Scaling Factor 0.1

Classical Learning Rate 1e-3

Hidden Dimension 100

Activation function ReLU

FC layers 3

Quantum
Number of Qubits 7

Quantum Learning Rate 1e-3

Variational Layers 4

Number of Repeats 1

UBEL(θl) =

nsub-layers∏
t=1

nqubits∏
q=1

CXq,q+1e
− i

2 θ
t,q
l σ

(q)
X ,

where CXa,b is the CNOT gate where a is the
control qubit, and b is the target qubit (we em-
ploy cyclic conditions where each qubit index is
taken modulo nqubits). For d reuploading layers,
we get:

|ψ⟩FiLM = SFiLM(xepi, yepi, θ) |0⟩⊗nqubits ,

where SFiLM(xepi, yepi, θ) is given by:

(
d∏

l=1

UBEL(θl)e
− i

2 (σ
(1)
Z xepi+σ

(2)
Z yepi)

)
UBEL(θ0)

The main section accepts the rest of the vari-
ables by embedding the state data into a five-
qubit feature-parameter quantum depth-infused
layer (QDIL) similar to Ref. [27]. The way this
layer works is by first breaking down the main in-
put vector x(main) into nsubvec sub-vectors of the
size of the number of qubits, using padding where
necessary, such that nfeatures ≤ nqubit × nsubvec.
Initially, a variational layer consisting of basic
entangler layers with four sub-layers is applied
to the ground state. Then, a layer of Pauli Z-
rotations encodes the first feature subvector, fol-
lowed by another variational layer. This process
is repeated multiple times until all subvectors are
encoded in the system.

|ψ⟩main = SQDIL(x, θ) |0⟩⊗nqubits , (1)

SQDIL =

(
nsubvec∏
l=1

UBEL(θl)V (xl)

)
UBEL(θ0) (2)

where xl denotes the l’th feature subvector,
UBEL(θl) the l’th basic entangler layer used as
the variational layer, and V (xl) the l’th encoding
layer. The encoding layer is defined as

V (xl) =

nqubits∏
t=1

e−
i
2xl+tσ

(t)
Z , (3)

where xl+t is the t’th feature in the l’th feature

subvector, and σ
(t)
Z is the Pauli-Z matrix applied

to qubit t.
Then, the two FiLM qubits are entangled with
the main section using CNOT gates controlled
using the two qubits and the NOT applied to all
the qubits in the state. Finally, another varia-
tional basic entangler layer is applied to the state
qubits, giving the final quantum state of the vari-
ational circuit as:

|ψ⟩ = Umain
BEL (θ)

[
2∏

c=1

7∏
t=3

CXc,t

]
|ψ⟩FiLM ⊗ |ψ⟩main

The five main qubits are then measured in the
computational basis many times to produce a
list of bitstrings, each of length five. Then, us-
ing post-selection, the expectation value of each
qubit was measured separately with respect to
the Pauli-Z basis. To do this for a qubit q, the
number of measurements where that qubit is 1
is subtracted from the number of times it is −1
and then divided by the total number of measure-
ments. This was repeated for every main qubit,
and so 5 expectation values were generated. This
model is realized on the QMware hybrid quantum
cloud [40].
The classical FiLM network consists of a multi-
layer perceptron (MLP) with three fully con-
nected layers where the input layer has 36 nodes
and the hidden layers have 100 nodes each. The
classical network has a ReLU activation function
applied to the hidden layers, and dropout regu-
larization with a rate of 0.5 is applied after each
hidden layer to prevent overfitting. Finally, the
classical network has five output nodes.
The outputs of the quantum network are con-
catenated with those of the purely classical FiLM
network. These ten values are then passed to a
fully-connected layer and reduced to five values.
The outputs of this architecture are five numbers
that act as the logit layer of the node classifier.
Subsequently, the neighboring node correspond-
ing to the highest number is chosen as the next
node.

IV. RESULTS AND ANALYSIS

It is desirable to explore whether a hybrid quan-
tum approach to solving the shortest path prob-

8

24% Predict Dijkstra’s path
8% Can’t predict a path

15% Predict better path92% Predict a path
Average accuracy

87%

Classical NN

Average accuracy
94%

HQNN

30% Predict Dijkstra’s path

5% Can’t predict a path

25% Predict better path

95% Predict a path

FIG. 4: The results of the supervised learning approach and their comparison. (a) and (b) compare the
classical NN and hybrid HQNN solutions with different metrics. The hybrid model achieved higher results in
the percentage of paths predicted, but also the percentage of paths predicted that are better or the same as
paths found by Dijkstra’s algorithm.

lem could offer an improvement over classical ma-
chine learning.

A. Results

The results of the classical NN and HQNN are
presented in Fig. 4. The classical NN model
reaches an average accuracy of 87% and an arrival
rate of 95%, showing the capability of mimicking
Dijkstra’s algorithm.

The HQNN model significantly improved over the
classical NN model, achieving an average accu-
racy of 94%. This means that, on average, the
HQNN model predicts a path 7% closer to the
node-wise Dijkstra’s predicted path. Further-
more, as depicted in Fig. 4, the hybrid model
predicts more successful paths than the classical
solution and finds more paths that are faster or
equal to Dijkstra’s algorithm.

It should be noted that the trained models can
predict better results than the baseline Dijkstra

algorithm due to the dynamically changing envi-
ronment. Node-wise Dijkstra always chooses the
next edge to travel based on the current travel
times on the graph. This can lead to sub-optimal
choices in case the travel times in the next time
step change. The learned networks can appar-
ently acquire knowledge on the existence of a dy-
namically evolving graph and make more robust
choices.

By assumption, the node-wise Dijkstra’s algo-
rithm is unavailable to the user as she only has
access to the local traffic information. However,
she can still run the traditional Dijkstra’s algo-
rithm on the full map, whose runtime increases
with the complexityO(nedges+nnodeslog(nnodes)),
whereas the runtime of the HQNN only depends
on the number of nodes in one path which in the
worst case scenario includes all nodes O(nnodes).
In addition to the practical success of the hybrid
FiLM model in solving the problem, it is desir-
able to understand the applicability of this model
in practice and the theoretical properties of the

9

integrated parameterized quantum circuit. Sec-
tions IVB and IVC address these matters.

B. Practical Analysis

In this section, we analyze the final hybrid model
in two practical ways: 1) PHN primacy and 2)
QPU performance. The former relates to the par-
allel nature of the network and assesses if either
the VQC or the MLP has dominated the training.
The latter demonstrates the technical feasibility
of running this model on an ion-based quantum
computer.

1. Primacy in the Hybrid Model

PHN suffer from the problem of primacy [35].
This occurs when the network decides to discard
the output of either the MLP or the VQC and
achieve a sub-optimal minimum rather than train
to include both and reach lower minima. To as-
sess the contribution of each sub-network, we con-
sider the weights of the final fully-connected layer
of the PHN, which connect the outputs of the
VQC and the MLP to the model outputs. In
our problem, this corresponds to a 5×10 matrix.
Fig. 5 shows this matrix for a fully-trained hybrid
model. The matrix provides two insights: 1) the
general values of the weights are similar between
the VQC and the MLP, and therefore no primacy
is observed, and 2) the quantum side of the ma-
trix exhibits smoother transitions, whereas the
MLP side is more irregular.
To quantify the relative contribution of the
VQC, we use the relative Frobenius norm αq =

∥Wq,o∥
∥Wq,o∥+∥Wc,o∥ , where ∥X∥ =

√
Tr(X2) and Wx,y

refers to the weight matrix connecting the x neu-
rons (in this case classical, or quantum) to the
outputs y. In this model, the relative contribu-
tion of the quantum part was αq = 0.45(3), which
meant that the VQC had an active participation
in the inference.

2. Performance on a QPU

The hybrid model was trained on the QMware
hybrid quantum simulator [40], and tested on
the 25-qubit ion-based quantum computer, IonQ
Aria 1 [41] on a short path with three decision
points. The hybrid model was loaded onto AWS
Braket and executed on the QPU through Pen-
nyLane’s AWS integration [42]. The circuit was
transpiled into 861 lines of OpenQASM3 code [43],
and each task was run for 1000 shots. Provided
that the device was available, tasks took 9 ± 1

c0 c1 c2 c3 c4 q0 q1 q2 q3 q4

o0

o1

o2

o3

o4 -1

-0.5

0

0.5

1

FIG. 5: Matrix of weights for the final fully con-
nected layer of the PHN, integrating the outputs of
the VQC and MLP. Our analysis reveals that there
is no discernible dominance of any specific compo-
nent. Furthermore, both classical and quantum net-
works exhibit comparable contributions to the out-
come. Interestingly, the quantum component exhibits
smoother transitions between its submatrix elements,
indicating a more uniform distribution of contribu-
tions from all quantum outputs than the classical sub-
matrix.

q0 q1 q2 q3 q4

QPU

SIM

-0.2

0

0.2

0.4

FIG. 6: The matrix of the VQC outputs for a decision
point generated using the IonQ Aria 1 (QPU) and the
QMware cloud simulator (SIM).

minutes, which includes the queuing and transpi-
lation time, but the extent of the latter effects is
unclear.

Fig. 6 compares the VQC outputs for the first
decision between the QPU and the infinite-shot
simulator. Both results show qualitatively the
same structure in the activations, and the correla-
tion between the numerically exact simulator and
the actual hardware is rather high. However, the
concrete values are slightly different, as expected,
due to shot noise and gate errors. These QPU
outputs indicate that the hybrid FiLM model can
be executed on today’s physical quantum hard-
ware for short paths with few predictions.

C. Theoretical Analysis

This section theoretically analyses the FiLM
quantum model of Fig. 3. We present a simpli-
fied version of the quantum FiLM network with
two qubits acting in its FiLM layer and one main
circuit qubit (three total qubits) for illustration
purposes. Fig. 7(a) shows the scaled-down cir-
cuit. Analogous to the original circuit, the sim-

10

b)
variational repetitions

re- uploading repetitions

M
ai

n
Fi

LM

a)

FIG. 7: (a) shows the simplified version of the FiLM quantum circuit, with the first two qubits encoding
the earthquake coordinates (xep, yep) and the third qubit encodes the two main graph features (x0, x1). The
variational layers in the FiLM section remain the basic entangler layers, but in the main section, they are
replaced with Pauli-Y rotations for simplicity. (b) shows the reduced graph of the example circuit in ZX form
for two reuploading repetitions and one variational repetition.

plified FiLM quantum network is divided into two
parts: the first involves two qubits and operates
on earthquake coordinates. The second part uti-
lizes one qubit to handle the main (non-FilM) fea-
tures which in this case will be two values (instead
of the 34 in the exact problem). These two parts
are interconnected through CNOT gates. This
simplification enables us to perform a qualitative
analysis, as the original architecture can be com-
putationally demanding to investigate. We focus
on several distinct methodologies in our research,
including the ZX-calculus [44] to explore circuit
reducibility, Fourier accessibility [37] to examine
the data embedding strategy, and Fisher informa-
tion [45] to investigate the trainable parametriza-
tion of the circuit. It is noteworthy that the exact
results will be different compared with the results
of analyzing the larger model as this model uses
Pauli-Y trainable rotations instead of the BEL
layer and fewer qubits in total. Still, the overall
results will be indicative of patterns that can be
generalized to the model in Fig. 3.

1. ZX-Calculus Reduction

ZX-calculus is a graphical language that replaces
circuit diagrams with ZX-diagrams by replac-
ing quantum tensors with so-called “spiders”,
nodes on a graph with edges that connect them
[44, 46, 47]. These spiders come in two flavors, a
light or green-colored spider that represents ten-
sors in the Z basis (|0⟩, |1⟩) and a dark or red-
colored spider that represents tensors in the X
basis (|+⟩, |−⟩). Once created, ZX diagrams can
be simplified and reduced with the language’s
graphical rewrite rules based on the underlying
quantum operations. For example, repetitions of
Pauli rotations sum together to form one Pauli
rotation with an angle equal to the sum of its
parts. This is translated into ZX-calculus as a

specific instance of the more general rule of “fus-
ing” spiders, where nodes of the same color com-
bine and sum their angles. More generally, quan-
tum operations often possess subtle symmetries
that make it difficult to implement effective cir-
cuits, and for exponentially large systems, matrix
multiplication quickly becomes unwieldy. Essen-
tially, ZX calculus replaces tedious matrix mul-
tiplication of quantum gates with easy-to-apply
graphical rules. Thus, analysis of ZX-diagrams is
helpful for identifying redundancies in a quantum
model.

To analyze the reduced quantum FiLM circuit of
Fig. 7(a), we first represented it as a red-green
ZX-diagram. Then ZX-calculus’s rewriting rules
are applied to simplify the circuit and remove re-
dundancies. Finally, the resulting new circuit is
extracted. Fig. 7(b) shows the simplified circuit
and measurement in ZX form. Note that some
trainable parameters could be removed in this
way. In this example, the trainable parameter la-
beled ‘θ8’ – corresponding to RX rotation applied
to the first qubit in the final U(θ) layer – is not
present as it self-annihilates with its adjoint and
thus has no effect on the model output. In other
words, the parameterized gate with this weight
should be removed. In the same way, the larger
circuit used in this work might include some re-
dundancies that are automatically removed due
to ZX analysis.

2. Fourier Expressivity

Ref. [37] showed that the output of a parameter-
ized quantum circuit is equivalent to a truncated
Fourier series. It proved that reuploading the fea-
tures of the dataset d times creates models that
approximate the dataset by a Fourier series with
degree d – see Ref. [48, 49] for non-linear scaling
with the number of data reuploading layers. For

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

−0.2

0.0

0.2

0.4

R
ea

l

ij-th Coefficients

-2,-2 -2,-1 -2,0 -2,1 -2,2 -1,-2 -1,-1 -1,0 -1,1 -1,2 0,-2 0,-1 0,0 0,1 0,2 1,-2 1,-1 1,0 1,1 1,2 2,-2 2,-1 2,0 2,1 2,2

−0.2

0.0

0.2

0.4

Im
ag

in
ar

y

FIG. 8: (a) shows a violin chart of 1000 samples of the values of the Fourier coefficients for various θs. The
ijth indices along the center line represent the Fourier coefficient cij . The width of the violins represents the
number of samples at that magnitude. The c00 term is a global offset and was removed for visual clarity but
ranges from −1 to 1.

a feature vector of length N , the Fourier series as
a function of the feature vector x and trainable
parameters θ is:

fθ(x) =
∑

ω1∈Ω1

. . .
∑

ωN∈ΩN

cω1...ωN
(θ)e−iω·x,

where ωi ∈ {−di, . . . , 0, . . . , di}. In other words,
the number of terms in the Fourier series is one
more than twice the number of times that input
was placed in the circuit, d. In this analysis, we
show the expressivity of the function fθ(x) by
sampling over a uniform distribution of random
values for each θi from [0, 2π] and by sampling
equidistant x values with a sampling frequency
of d.
For visual clarity, we display a scaled-down ver-
sion of the model and only focus on the impact
of this sampling on the Fourier terms produced
by the FiLM part of the circuit that encodes the
earthquake coordinates, namely the coordinates
of the earthquake x and y. We rewrite fθ(x) as

fθ(x, y) =

2∑
ωx=−2

2∑
ωy=−2

cωx,ωy (θ) e
−iωxxe−iωyy

Fig. 8 demonstrates a violin plot of the Fourier
coefficients cωx,ωy sampled over various θ realisa-
tions. A completely non-expressive model would
have terms close to zero for all these coefficients.
Instead, the figure shows that the quantum FiLM
model is expressive up to 2 coefficient pairs in
the real numbers and four coefficient pairs in the
imaginary numbers. For the x coefficients, the
d = 0 terms are exclusively real, while the d = 1
are exclusively imaginary. The final d = 2 has
no expressivity. This is expected since the ZX-
calculus in Fig. 7(b) shows that one repetition
is redundant. Every data reuploading layer is ex-
pected to add a new frequency to the degree d for

each input, and the expressivity increases as the
variational repetitions increase. One could con-
sult the Fisher information matrix to determine
the appropriate range for these repetitions.

3. Fisher Information

The concept of Fisher information plays a cru-
cial role in comprehending model capacity and
trainability [50, 51]. Fisher information quantifies
the knowledge gained by a statistical model, be it
classical or quantum, based on a specific param-
eterization. In the context of supervised machine
learning, we define a family of models with differ-
ent parameterizations as F := P (x,y|θ) : θ ∈ Θ,
where (x,y) represents the features and targets
from our dataset, respectively. Previous studies
[45, 52] have demonstrated that F can be viewed
as a Riemannian manifold, and the Fisher infor-
mation matrix can be interpreted as a metric on
this manifold, which in some cases (including in
this work) can coincide with the loss landscape.
The Fisher information matrix is defined as:

Fij(θ) =

Ex,y

[(
∂θi logP (x,y|θ)

)(
∂θj logP (x,y|θ)

)T]
where the parameters θ are the trainable param-
eters of the HQNN.
The Fisher information enables us to assess the
magnitude of changes in the joint distribution as
we traverse the landscape of model parameters.
As the quantum circuit in this work is a bipar-
tite system with FiLM features and main features
entering separate processing sections, one would
reasonably expect a clear separation between the
Fisher information matrices of the FiLM and the
main sections of the circuit. This hypothesis is

12

Fisher matrix

FIG. 9: Fisher analysis of the miniaturized quantum FiLM circuit. (a) shows the average Fisher information
matrix for a model with N = 1 repetition and K = 3 reuploadings, considering both circuit parts (FiLM and
Main). The average Fisher matrix in this configuration is non-degenerate, and the FiLM and Main weights are
independent. (b) demonstrates the relationship between the number of model weights nW (corresponding to
the maximal possible rank) and the rank of the average Fisher information matrix across different repetitions
(N = {1, 2}) and reuploadings (K = {1, 2, 3}). The absence of maximal rank in networks with N = 2 indicates
the presence of zero gradient parameters. (c) is the Fisher information matrix normalized eigenspectrum
frequency for models with N = {1, 2} repetitions and K = {1, 3} reuploadings. The degeneracy around zero
signifies lower trainability.

confirmed by the Fisher information matrix of
the entire circuit shown in Fig. 9(a), where two
clearly separated blocks are visible.

The section that processes main features oper-
ates with four trainable parameters for a sin-
gle qubit. The number of trainable parame-
ters for the FiLM earthquake part is larger. It
depends on two setup choices: 1) the number
of internal variational layers making each vari-
ational layer more expressive, and 2) the num-
ber of external data reuploading layers increas-
ing the Fourier expressivity of the FiLM layer
– see Sec. IVC2. To explore the variations of
the FiLM part, we examine the different combi-
nations of internal layer repetitions, denoted as
N = {1, 2}, and external reuploading layers, de-
noted as K = {1, 2, 3} showcased in Fig. 7(a).
Consequently, this configuration’s total trainable
parameters equals np = 2N(K + 1). We com-
pute the Fisher information for each setting to
assess the architecture configurations. We use 20
feature samples generated from a Gaussian distri-
bution xi ∼ N (µ = 0, σ2 = 1), with targets en-
compassing all possible 3-qubit basis states. The
Fisher information matrix is calculated using 20
realizations of uniform weights θ ∈ [0, 2π).

The spectrum of the Fisher information matrix,
which encompasses all weights, provides insights
into the squared gradients for each parameter
[45]. A network with high trainability will exhibit
fewer eigenvalues near zero. Fig. 9(b) illustrates
the relationship between the number of trainable
parameters and the rank of the Fisher informa-
tion matrix for different variations of architecture
for the circuit earthquake part. We see that for
N = 2 repetitions, the rank of the Fisher matrix
is consistently lower than the number of weights
across all reuploading counts. This indicates de-

generacy in the Fisher information matrix, im-
plying the presence of zero gradients for certain
network parameters. Specifically, a network with
N = 2 repetitions and K = 3 reuploadings would
be expected to have four zero gradient weights.
For networks with a single repetition (N = 1), de-
generacy does not occur for all possible reupload-
ings (K). However, the degenerate Fisher matrix
is not the primary concern for trainability. Gen-
erally, trainability is unaffected if we encounter
zero gradients for only a few parameters while
the remaining parameters exhibit non-vanishing
gradients. Nonetheless, even networks with non-
degenerate Fisher matrices can suffer from low
trainability if a significant proportion of eigen-
values have small absolute values. Fig. 9(c) ap-
proximates the eigenvalue distribution for each
configuration. The frequency of eigenvalues close
to zero increases from 46% for N = 1 repetition
and K = 1 reuploading to nearly 65% for N = 2
repetitions and K = 3 reuploadings. Hence, we
observe that the likelihood of encountering eigen-
values close to zero tends to rise with the number
of trainable parameters.

D. Analysis discussion

The practical analysis showed that both the
quantum, as well as the classical processing, con-
tribute on the same order of magnitude to the
output. This implies that model primacy is not
present in the current scenario. Additionally, we
could show a route for running the current ar-
chitecture on a trapped ion quantum hardware
device.

The ZX calculus reduction shows that stacking
the BEL layers can lead to reducible trainable

13

parameters and that efficient training should con-
sider reducing the complete circuit and remov-
ing any non-contributing trainable parameters.
The Fourier analysis empirically shows the effect
of the data reuploading layers on the function-
fitting capabilities of the quantum FiLM layer. It
shows that more data reuploading layers leads to
an increased number of Fourier terms expressed
by the model, and this can be generalized to the
full model in Fig. 3. Finally, the Fisher matrix
shows the clear separation of the trainable param-
eters of the FiLM and main layers, as well as the
increased expressivity and decreased trainability
of the model as the BEL sub-layers increase.

V. CONCLUSION

This work explored the potential of supervised
hybrid quantum machine learning in optimizing
emergency evacuation routes during natural dis-
asters. We presented a hybrid supervised learn-
ing approach and tested it in a dynamic environ-
ment with a dynamic earthquake and increasing
traffic congestion at exit points. We compared
the approach to a baseline node-wise Dijkstra’s
algorithm, which finds the shortest path at ev-
ery new node and time step given the current
situation. Our results showed that hybrid super-

vised learning could learn to match Dijkstra’s al-
gorithm with having access to only a limited por-
tion of the graph, making it a workable option
in an uncertain and evolving situation. The hy-
brid model outperforms the purely classical ap-
proach and provides an improvement of 7% for
the average accuracy of the model. Additionally,
we showed that the quantum part of the hybrid
model contributed significantly to the inference.
This study aimed to show the entire stack of hy-
brid quantum machine learning applied to a prac-
tical problem by showcasing: problem formula-
tion, classical resolution, hybrid formulation and
resolution, quantum analysis and efficiency, and
QPU integration.

Overall, the hybrid supervised learning approach
has shown promising results in optimizing emer-
gency evacuation plans for cars during earth-
quakes. Future research needs to focus on test-
ing the approach on different and larger graphs
and exploring the potential of other quantum ma-
chine learning techniques for solving similar opti-
mization problems in dynamic environments. An
exciting avenue for future research could be to
examine the potential of reinforcement learning
in such a setting. This approach could match the
promising results of this work and potentially dis-
cover even more efficient evacuation paths.

[1] Kishor Jaiswal, David J Wald, and Mike
Hearne. Estimating casualties for large earth-
quakes worldwide using an empirical approach.
2009.

[2] Jose Badal and E Samardzhieva. Prognostic es-
timations of casualties caused by strong seismic
impacts. Bull Seismol Soc Am, 92(6):2310–2322,
2002.

[3] Rezaur Rahman and Samiul Hasan. A Deep
Learning Approach for Network-wide Dynamic
Traffic Prediction during Hurricane Evacuation.
arXiv preprint arXiv.2202.12505, 2022.

[4] Pinom Ering and GL Sivakumar Babu. Effect of
spatial variability of earthquake ground motions
on the reliability of road system. Soil Dynamics
and Earthquake Engineering, 136:106207, 2020.

[5] Yinghua Song, Ke Wu, and Dan Liu. A two-
stage simulation analysis of uncertain road dam-
age on the urban emergency delivery network.
PLoS one, 17(5):e0267043, 2022.

[6] Mohammad Amin Nabian and Hadi Meidani.
Deep learning for accelerated seismic reliability
analysis of transportation networks. Computer-
Aided Civil and Infrastructure Engineering,
33(6):443–458, 2018.

[7] Zhen XU, Wei Jin, and Ming Zheng. An analysis
method on post-earthquake traversability of road
network considering building collapse. Interna-

tional Journal of Engineering, 32(11):1584–1590,
2019.

[8] Tomoaki Nishino, Takeyoshi Tanaka, and Aki-
hiko Hokugo. An evaluation method for the ur-
ban post-earthquake fire risk considering multi-
ple scenarios of fire spread and evacuation. Fire
safety journal, 54:167–180, 2012.

[9] Catarina Costa, Rui Figueiredo, Vitor Silva,
and Paolo Bazzurro. Application of open tools
and datasets to probabilistic modeling of road
traffic disruptions due to earthquake damage.
Earthquake Engineering & Structural Dynamics,
49(12):1236–1255, 2020.

[10] Yingying Wu, Zhen Xu, Chenxi Liang, and
Ruizhuo Song. Post-earthquake traffic simula-
tion considering road traversability. Sustainabil-
ity, 14(18):11145, 2022.

[11] Zhen Xu, Yingying Wu, Xintian Hao, Nan Li,
and Dongping Fang. A joint analysis method for
capability and demand of post-earthquake med-
ical rescue in a city. International Journal of
Disaster Risk Reduction, 80:103249, 2022.

[12] Angely Oyola, Dennis G. Romero, and Boris X.
Vintimilla. A Dijkstra-Based Algorithm for Se-
lecting the Shortest-Safe Evacuation Routes in
Dynamic Environments . Lecture Notes in Com-
puter Science, pages 131–135, 2017.

[13] Yi-zhou Chen, Shi-fei Shen, Tao Chen, and Rui

14

Yang. Path Optimization Study for Vehicles
Evacuation based on Dijkstra Algorithm. Pro-
cedia Engineering, 71:159–165, 2014.

[14] Nor Amalina Mohd Sabri, Abd Samad Hasan
Basari, Burairah Husin, and Khyrina Airin
Fariza Abu Samah. The Utilisation of Dijkstra’s
Algorithm to Assist Evacuation Route in Higher
and Close Building. Journal of Computer Sci-
ence, 11(2):330–336, 2015.

[15] Fanliang Bu and Hui Fang. Shortest Path Algo-
rithm within Dynamic Restricted Searching Area
in City Emergency Rescue. 2010 IEEE Inter-
national Conference on Emergency Management
and Management Sciences, pages 371–374, 2010.

[16] Kevin Osanlou, Christophe Guettier, Tristan
Cazenave, and Eric Jacopin. Planning and
Learning: A Review of Methods involving
Path-Planning for Autonomous Vehicles. arXiv
preprint arXiv:2207.13181, 2022.

[17] Giacomo Nannicini and Leo Liberti. Shortest
paths on dynamic graphs. International Trans-
actions in Operational Research, 15(5):551–563,
2008.

[18] J. E. Doran and D. Michie. Experiments with
the Graph Traverser program. Proceedings of the
Royal Society of London. Series A, Mathematical
and Physical Sciences, 294:235–259, 1966.

[19] E. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[20] Victor Klee. Combinatorial Optimization: What
Is the State of the Art. Mathematics of Opera-
tions Research, 5(1):1–26, 1980.

[21] Vedran Dunjko and Hans J Briegel. Machine
learning & artificial intelligence in the quantum
domain: a review of recent progress. Reports on
Progress in Physics, 81(7):074001, 2018.

[22] Alexey Melnikov, Mohammad Kordzanganeh,
Alexander Alodjants, and Ray-Kuang Lee.
Quantum machine learning: from physics to
software engineering. Advances in Physics: X,
8(1):2165452, 2023.

[23] Jacob Biamonte, Peter Wittek, Nicola Pancotti,
Patrick Rebentrost, Nathan Wiebe, and Seth
Lloyd. Quantum machine learning. Nature,
549(7671):195–202, 2017.

[24] M. Cerezo, Guillaume Verdon, Hsin-Yuan
Huang, Lukasz Cincio, and Patrick J. Coles.
Challenges and opportunities in quantum ma-
chine learning. Nature Computational Science,
2(9):567–576, 2022.

[25] M. Cerezo, Guillaume Verdon, Hsin-Yuan
Huang, Lukasz Cincio, and Patrick J. Coles.
Challenges and opportunities in quantum ma-
chine learning. Nature Computational Science,
2(9):567–576, 2022.

[26] Michael Perelshtein, Asel Sagingalieva, Karan
Pinto, Vishal Shete, Alexey Pakhomchik, et al.
Practical application-specific advantage through
hybrid quantum computing. arXiv preprint
arXiv:2205.04858, 2022.

[27] Asel Sagingalieva, Mohammad Kordzanganeh,
Nurbolat Kenbayev, Daria Kosichkina, Tatiana
Tomashuk, et al. Hybrid quantum neural net-

work for drug response prediction. Cancers,
15(10):2705, 2023.

[28] Serge Rainjonneau, Igor Tokarev, Sergei Iudin,
Saaketh Rayaprolu, Karan Pinto, et al. Quan-
tum algorithms applied to satellite mission plan-
ning for Earth observation. IEEE Journal of Se-
lected Topics in Applied Earth Observations and
Remote Sensing, pages 1–13, 2023.

[29] Asel Sagingalieva, Andrii Kurkin, Artem Mel-
nikov, Daniil Kuhmistrov, et al. Hyperpa-
rameter optimization of hybrid quantum neural
networks for car classification. arXiv preprint
arXiv:2205.04878, 2022.

[30] Arsenii Senokosov, Alexander Sedykh, Asel
Sagingalieva, and Alexey Melnikov. Quantum
machine learning for image classification. arXiv
preprint arXiv:2304.09224, 2023.

[31] Alexandr Sedykh, Maninadh Podapaka, Asel
Sagingalieva, Nikita Smertyak, Karan Pinto,
et al. Quantum physics-informed neural net-
works for simulating computational fluid dy-
namics in complex shapes. arXiv preprint
arXiv:2304.11247, 2023.

[32] Andrii Kurkin, Jonas Hegemann, Mo Kordzan-
ganeh, and Alexey Melnikov. Forecasting
the steam mass flow in a powerplant using
the parallel hybrid network. arXiv preprint
arXiv:2307.09483, 2023.

[33] Geoff Boeing. OSMnx: New methods for ac-
quiring, constructing, analyzing, and visualizing
complex street networks. Computers, Environ-
ment and Urban Systems, 65:126–139, 2017.

[34] Ethan Perez, Florian Strub, Harm de Vries, Vin-
cent Dumoulin, and Aaron Courville. FiLM:
Visual Reasoning with a General Conditioning
Layer. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), 2018.

[35] Mohammad Kordzanganeh, Daria Kosichkina,
and Alexey Melnikov. Parallel Hybrid Networks:
an interplay between quantum and classical neu-
ral networks. arXiv preprint arXiv:2303.03227,
2023.

[36] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies
Gil-Fuster, and José I. Latorre. Data re-
uploading for a universal quantum classifier.
Quantum, 4:226, 2020.

[37] Maria Schuld, Ryan Sweke, and Johannes Jakob
Meyer. Effect of data encoding on the expressive
power of variational quantum-machine-learning
models. Physical Review A, 103(3):032430, 2021.

[38] Mohammad Kordzanganeh, Aydin Utting, and
Anna Scaife. QuantumMachine Learning for Ra-
dio Astronomy. arXiv, 2021. arXiv:2112.02655
[astro-ph, physics:quant-ph, stat] Comment: Ac-
cepted in: Fourth Workshop on Machine Learn-
ing and the Physical Sciences (35th Confer-
ence on Neural Information Processing Systems;
NeurIPS2021); final version.

[39] Xanadu. penny-
lane.templates.layers.basic entangler —
PennyLane. https://docs.pennylane.

ai/en/stable/_modules/pennylane/

templates/layers/basic_entangler.html#

BasicEntanglerLayers. Accessed: 10-March-

https://docs.pennylane.ai/en/stable/_modules/pennylane/templates/layers/basic_entangler.html#BasicEntanglerLayers
https://docs.pennylane.ai/en/stable/_modules/pennylane/templates/layers/basic_entangler.html#BasicEntanglerLayers
https://docs.pennylane.ai/en/stable/_modules/pennylane/templates/layers/basic_entangler.html#BasicEntanglerLayers
https://docs.pennylane.ai/en/stable/_modules/pennylane/templates/layers/basic_entangler.html#BasicEntanglerLayers

15

2023.
[40] Mohammad Kordzanganeh, Markus Buchberger,

Basil Kyriacou, Maxim Povolotskii, Wilhelm
Fischer, et al. Benchmarking simulated and
physical quantum processing units using quan-
tum and hybrid algorithms. Advanced Quantum
Technologies, 6(8):2300043, 2023.

[41] IonQ. IonQ Aria: Practical Performance, 2023.
[42] AWS Braket. Use PennyLane with Amazon

Braket - Amazon Braket.
[43] Andrew Cross, Ali Javadi-Abhari, Thomas

Alexander, Niel de Beaudrap, Lev S. Bishop,
et al. OpenQASM 3: A broader and deeper
quantum assembly language. ACM Transactions
on Quantum Computing, 3, 2022.

[44] Bob Coecke and Ross Duncan. Interact-
ing quantum observables: categorical algebra
and diagrammatics. New Journal of Physics,
13(4):043016, 2011.

[45] Amira Abbas, David Sutter, Christa Zoufal,
Aurélien Lucchi, Alessio Figalli, et al. The power
of quantum neural networks. Nature Computa-
tional Science, 1:403–409, 2021.

[46] John van de Wetering. ZX-calculus for the work-
ing quantum computer scientist. arXiv preprint
arXiv:2012.13966, 2020.

[47] Quanlong Wang. Completeness of the ZX-
calculus. arXiv preprint arXiv:2209.14894, 2023.

[48] Mo Kordzanganeh, Pavel Sekatski, Markus
Pflitsch, and Alexey Melnikov. An
exponentially-growing family of universal
quantum circuits. Machine Learning: Science
and Technology, 2023.

[49] S. Shin, Y. S. Teo, and H. Jeong. Exponential
data encoding for quantum supervised learning.
Physical Review A, 107(1), 2023.

[50] Kok Chuan Tan, Varun Narasimhachar, and
Bartosz Regula. Fisher information universally
identifies quantum resources. Physical Review
Letters, 127(20), 2021.

[51] Alexander Ly, Maarten Marsman, Josine Verha-
gen, Raoul Grasman, and Eric-Jan Wagenmak-
ers. A tutorial on fisher information, 2017.

[52] Shun-Ichi Amari. Natural gradient works ef-
ficiently in learning. Neural Computation,
10(2):251–276, 1998.

	ML_A Supervised Hybrid Quantum Machine Learning Solution to the Emergency Escape Routing Problem
	A supervised hybrid quantum machine learning solution to the emergency escape routing problem
	introduction
	The Emergency Escape Routing Problem
	Problem Setting
	Map Data Source and Preparation
	Mathematical Problem Abstraction

	Setup and Methods
	Data Engineering
	Model Evaluation Metrics
	Hybrid Supervised Learning Architecture

	Results and Analysis
	Results
	Practical Analysis
	Primacy in the Hybrid Model
	Performance on a QPU

	Theoretical Analysis
	ZX-Calculus Reduction
	Fourier Expressivity
	Fisher Information

	Analysis discussion

	Conclusion
	References

