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Abstract

Exploring the conformational space of molecules remains a challenge of fundamental

importance to quantum chemistry: identification of relevant conformers at ambient con-

ditions enables predictive simulations of almost arbitrary properties. Here, we propose

a novel approach to enable conformational sampling of large organic molecules where

the combinatorial explosion of possible conformers prevents the use of a brute-force sys-

tematic conformer search. We employ tensor trains as a highly efficient dimensionality

reduction algorithm, effectively reducing the scaling from exponential to polynomial.

In our approach, the conformational search is expressed as global energy minimiza-

tion task in a high-dimensional grid of dihedral angles. Dimensionality reduction is

achieved through a tensor train representation of the high-dimensional torsion space.

The performance of the approach is assessed on a variety of drug-like molecules in
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direct comparison to the state-of-the-art metadynamics based conformer rotamer en-

semble sampling tool (CREST). The comparison shows significant acceleration of up

to an order of magnitude, while maintaining comparable accuracy. More importantly,

the presented approach allows treatment of larger molecules than typically accessible

with metadynamics.
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1 Introduction

While the structure activity relationship (SAR) is a well known concept to every chemist,

drawing a causal link between a molecule’s structure and its properties remains a major

challenge of computational chemistry. In addition to the chemical composition and connec-

tivity, the 3-dimensional arrangement of a molecule’s atoms largely impacts its physical and

chemical properties. Therefore, the search for all thermally accessible conformations is cru-

cial for chemical simulations.1 For this purpose, numerous approaches have been developed

over the past decades.2 Each of these approaches requires a structure generation procedure

and subsequent energetic ranking of the obtained geometries.

While gradient optimization algorithms are suitable to identify local minima on the poten-

tial energy surface (PES), they provide no information on whether the overall energetically

lowest structure is obtained.3 To determine the global minimum on the PES, so-called global

optimization algorithms are required.4 Finding relevant minima in conformational space tra-

ditionally relies on initial guesses constructed from intuition, which makes it difficult to scale

to systems with many degrees of freedom. To identify the global minimum automatically,

multiple structures across the conformational space need to be examined. However, with

increasing size and flexibility of a molecule, the number of possible conformations drastically

increases necessitating efficient procedures for this global optimization problem. An early

approach by Saunders is built upon Metropolis Monte Carlo (MC) simulations utilizing ran-

dom displacements of atoms in Cartesian space. The acceptance rate of each individual step

is based on molecular mechanics (MM) energies after subsequent gradient optimization.5

Even for rather small molecules, the 3N -6 internal degrees of freedom lead to a huge search

space. A related global optimization approach is the basin hopping approach by Wales and

Doye,6 which was later adapted by Goedecker.7 For conformational problems, neglecting

rigid bond distances and valence angles allows for a significant simplification of the coor-

dinate space as demonstrated by Chang et al.8 As the individual modification of dihedral

angles is not possible without damaging cyclic structures, the approach is primarily suited
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for acyclic molecules. Lipton and Still extended the method to cyclic systems by applying

ring closure constraints during the gradient optimization.9

In contrast to relying on entirely random structure modifications, molecular dynamics (MD)

simulations provide a more chemically motivated strategy to conformer sampling. During an

MD simulation, the internal motion of a molecule is simulated for a certain time at a fixed

temperature. A conformer ensemble is generated from an MD trajectory by extracting snap-

shots at fixed time intervals and optimizing the structures using standard gradient methods.

The application of MD to smaller oligopeptides was shown by Brooks et al. and even to an en-

tire protein by Elber and Karplus using myoglobin as example.10,11 While MD simulations,

in principle, guarantee to converge to the global minimum, the required simulation times

and the associated number of energy evaluations is usually unfeasible, thus limiting MD to

a rather local analysis of the conformational space.12 To accelerate structural changes upon

simulation, two general approaches can be pursued: either increasing the internal energy of

the system by raising the temperature or effectively flattening the PES to facilitate passing

interconformational energy barriers. The former approach is applied in simulated annealing,

which is applicable to MD as well as to Metropolis MC simulations.13 Simulated annealing

mimics controlled crystal growth by starting the simulation at high temperatures and then

gradually lowering it, which was demonstrated as a viable method for conformer sampling by

Wilson et al. in the context of MC and by Lelj et al. for MD simulations.14,15 Alternatively,

the PES can be flattened by either a constant boost potential as introduced by Hamelberg et

al. or a dynamically updated bias potential as described by Laio and Parrinello significantly

lowering the required time demand.16,17 The latter is referred to as metadynamics (MTD)

simulation, which was much simplified by Grimme using the Cartesian root mean square

deviation (RMSD) of the atomic positions as collective variable for constructing the bias

potential.18 Based on this strategy, Pracht et al. developed CREST making primarily use of

MTD but also MD simulations as well as genetic crossing (GC) to generate conformer and

rotamer ensembles of almost any type of molecules.19,20 Here, rotamers refer to degenerate
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conformers that only vary in permutations of chemically equivalent atoms.

While the aforementioned approaches can eventually lead to the global minimum, they lack

a directional force guiding the algorithm towards the global minimum. Different from that,

buildup approaches are guided by knowledge of favorable conformations of fragments, which

are used to construct the molecule’s conformers. This fragmentation procedure was applied

to the analysis of a pentapeptide constructed from amino acid conformers by Vásquez and

Scheraga.21 However, the definition of fragments is, to some extent, arbitrary and the quality

of the final ensemble heavily relies on the availability of fragments in the respective data base.

Therefore, a more general approach treating every possible bond rotation explicitly would

be desirable. So far, this has been impossible due to the unfavorable exponential scaling of

systematic conformer search approaches.

Tensor networks have been a powerful tool used in condensed matter physics and chemical

physics to mitigate exponential scaling in multi-dimensional quantum systems.22 A com-

monly known approach is the density matrix renormalization group (DMRG) originally

introduced by White et al., where a tensor train (TT) is used to describe 1D spin lat-

tice systems.23 Another well-known approach is the multi-configurational time-dependent

Hartree (MCTDH) method developed by Meyer and coworkers to describe quantum dynam-

ics of molecules.24 Tensor networks factorize high-dimensional tensors into products of lower

dimensional tensors where the nodes in the network represent the tensors and edges rep-

resent their indices. While tensor networks efficiently deal with high-dimensional systems,

they are limited to applications in linear algebra. Analogously, high-dimensional functions

can be separated into lower dimensional ones using the tensor network formalism by using

tensor network grids. Consequently, a high-dimensional grid is decomposed into multiple

lower-dimensional grids. The first tensor network grid was proposed by Manthe, called the

correlation discrete variable representation (CDVR).25 This idea was later extended from

simple network types to general trees.26 Recently, the scaling of the approach was drasti-
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cally reduced, and schemes for systematic convergence were developed.27,28 Independently,

Oseledets and coworkers developed the cross approximation scheme for TTs which follows

similar ideas but was first developed for the compression of functions.29 The main difference

compared to the CDVR approach is the way in which the different grids are combined and

that lower dimensional grids are subsets of the high-dimensional grid in the cross approxi-

mation. Tensor network grids have a variety of uses including integration, compression, and

optimization.30 In the present work, tensor network grids provide the foundation for our

approach of systematically finding conformers.

Each of the aforementioned approaches inevitably requires numerous energy evaluations,

necessitating either MM or low-cost quantum mechanics (QM) methods to maintain a man-

ageable computational demand. Most prominent examples in the field of organic chemistry

are the General AMBER Force Field (GAFF) originally introduced by Wang et al., par-

ticularly, since the implementation of a new charge model by He et al.. Other prominent

force fields are the most recent versions of OPLS and OpenFF developed by Lu et al. and

Boothroyd et al., respectively.31–35 A comprehensive benchmark by Lim et al. indicates the

superior performance of the latter two methods.36 Regarding large biomolecular systems

predominantly Amber and CHARMM force fields are used, typically designed for the appli-

cation to either proteins, nucleic acids, carbohydrates or lipids.37–44

While MM methods are usually preferred due to their low computational cost, their parametri-

zation usually restricts them to a narrow range of molecules. Hence, they are not suitable for

a universal conformer search approach.45 Most promising for energy evaluation is the GFN

family of methods, in particular the force field GFN-FF and the semiempirical quantum me-

chanics (SQM) method GFN2-xTB.46,47 Since GFN2-xTB is efficient, reproduces molecular

geometries particularly well, and is parametrized for the majority of elements (Z ≤ 86), it is

often the method of choice in quantum chemical investigations of medium-sized organic and

inorganic molecules and is well suited for large conformer screenings.

6

https://doi.org/10.26434/chemrxiv-2024-jjns1 ORCID: https://orcid.org/0000-0003-3242-496X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-jjns1
https://orcid.org/0000-0003-3242-496X
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 Theory

2.1 Conformer Search

We formalize the conformer search as the optimization problem argmin
X

E(X) where E is the

(electronic ground state) energy of an N -atom molecule and X represents the 3N Cartesian

coordinates. Since the energy is usually invariant to translation and rotation, we express

the problem more naturally in terms of the 3N − 6 internal coordinates (denoted by Q)

and instead solve argmin
Q

E(Q). Suitable choice of coordinate representation drastically

reduces correlation between the coordinates, which facilitates finding minima. We use bond,

angle, and torsion (BAT)-coordinates, Q (described in detail later), and select only the

relevant dihedral angles. We represent them on a grid which results in a tensor Ei1···id =

E(Qi1···id) storing the molecule’s potential energy as a function of the internal coordinates

Q. Here, i1 · · · id denote the individual indices of the d-dimensional tensor. Searching all

geometries would scale exponentially in the number of rotatable bonds. We avoid this by

using TTs to quickly search for the optimal coordinates corresponding to the energetically

lowest conformer with only polynomial effort. In our approach, we combine the search with

a local gradient optimizer, so that the tensor network mainly serves as a tool to generate

points in the vicinity of multiple different suitable local minima and to avoid clustering of

points in one or a few minima.

2.2 Tensor Train Optimization

The TT representation of an order d tensor A with elements Ai1...id reads

Ai1...id =

r1...rd∑
l1...ld

A1
i1l1

· A2
l1i1l2

· ... · Ad
ldid

. (1)

where the original tensor is factorized into a sequence of 2nd and 3rd order tensor cores Ak

with elements Ak
lk−1iklk

. These tensor cores carry new virtual indices lk−1 and lk that connect

7

https://doi.org/10.26434/chemrxiv-2024-jjns1 ORCID: https://orcid.org/0000-0003-3242-496X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-jjns1
https://orcid.org/0000-0003-3242-496X
https://creativecommons.org/licenses/by-nc-nd/4.0/


neighboring tensor cores, except for the first and last tensor core which only have a single

virtual index l1 and ld, respectively. The upper bounds of the virtual indices, r1, ..., rd, are

the called ranks or bond dimensions. In general, the ranks required to accurately represent

tensors A can grow exponentially order d. In many practical applications, however, small rk

are sufficient to represent the tensor and we say that it has a low-rank TT representation.48

In principle, the TT representation can be obtained by performing a sequence of singular

value decompositions on the core tensor. This, however, would require a priori knowledge

of the large core tensor.48 If the full tensor itself is unknown, the TT representation of A

can be generated by evaluating elements on demand from a function Ai1...id = A(xi1 , ..., xid).

Furthermore, it is desirable to evaluate this function very rarely, since evaluating the function

itself is costly. The TT cross approximation29 enables us to compress a tensor into TT format

from accessing just a few elements. Additionally, we obtain an element close to the modulus

largest value as an entry in one of the core tensors. Due to these properties, it is a highly

efficient algorithm for finding function minima (or maxima).49

We first introduce the matrix cross approximation and extend the discussion to the more

general TT cross approximation. Matrix cross approximation50 aims at finding a rank-r

representation of a matrix with elements Aij by accessing only a few rows and columns.

The target representation consists of a set of skeleton rows with indices Ir and columns Ic

approximating the matrix as

Aij ≈
∑
IcIr

AiIcA
−1
IcIr

AjIr , (2)

where A−1
IcIr

denotes elements of the inverse of the so-called cross matrix AIcIr . If A is of

rank r and described by any r linear independent rows and columns, the representation is

accurate. If not, the choice of rows and columns matters. A convenient choice is the set of

rows and columns that maximizes the volume of the cross matrix | det(A)| =
∏

k σk where

σk are the singular values of the cross matrix.51 The volume of a matrix is closely related

to the Frobenius norm ||A||F =
∑

k σ
2
k of a matrix, but there exist algorithms that allow

performing updates on the volume with preferable scaling. The matrix cross approximation
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proceeds as follows:

1. Choose a random set of linear independent columns Ic.

2. Find the r × r submatrix with maximal volume in the rectangular column submatrix

matrix A(:, Ic) using the maxvol algorithm51 (here we use matlab notation).

3. Set Ir to the rows obtained in the maxvol algorithm.

4. Now search for the r× r submatrix in the row submatrix A(Ir, :) using maxvol and set

Ic to the obtained columns.

5. Continue these iterations, optimizing row and column indices, until convergence is

reached.

The TT cross approximation performs a matrix cross approximation, but on the flattened

tensor cores at every node. At a site k, the r × N × r tensor is reshaped to a (r · N) × r

matrix and the maximal volume submatrix is evaluated. The resulting rows and columns

determine which elements of the high-dimensional tensors are evaluated at the next site.

A macro iteration or sweep entails performing the previously described micro-iterations for

every tensor core. The sweeps are performed back and forth over all tensor cores until

convergences is reached. We refer the interested reader for more details to a recent in-

depth review of tensor cross approximation by N. Fernández et al.30 This work also presents

a partially rank-revealing LU-decomposition as a more stable alternative to the maxvol

algorithm.

3 The Tensor Train Conformer Search (TTConf)

In this work, we present the tensor train conformer search (TTConf), a tool for the global op-

timization of molecular conformations. TT optimization is used to screen many local minima

in internal coordinates of the molecule. We combine it with gradient-based local optimiza-

tion to converge energies within local minima and thereby reduce the required TT ranks. For
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the scope of this work, we will use BAT coordinates to describe molecular conformations and

use a subset of dihedral angles, i.e., the ones characterizing single bond rotations, to span

the conformationally relevant coordinate space. While BAT coordinates provide a natural

description for a wide variety of molecules, other kinds of internal coordinates may be better

suited for certain substructures like rings. The design of more elaborate internal coordinates,

however, will be part of future work. For this work, we simply work in the space of torsion

angles for the global optimization and combine it with a local geometry optimization to

yield the entries of the high dimensional tensor in Eq. 1. The quality of conformers found by

TTConf is expected to rely heavily on the chosen theory level that defines the PES. TTConf

works with any kind of energy function that could be coming from force field, SQM, and

ab inito approaches. In this work, the single-point evaluations and gradient optimization

are carried out using the GFN family of methods which provide a good trade off between

speed and accuracy. To perform geometry optimizations in parallel the mdopt subroutine of

CREST (version 3.0.1)52 is used in combination with the interface to the tblite package.53

In the following, we will describe the details of the TTConf conformer sampling algorithm

as outlined in Fig. 1.

Figure 1: General workflow of the TTConf conformer sampling algorithm.
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3.1 Determining the Molecular Graph Representation

Based on a user-provided input structure (in Cartesian coordinates), an initial gradient

optimization is performed at the requested level of theory to ensure a chemically reasonable

starting geometry. From the resulting geometry, covalent bonds are identified from which a

molecular graph is generated. The graph setup and analysis are realized with the Python

package networkx, which facilitates the determination of the pairwise shortest-path distances

and identification of ring structures.54

3.2 Setup of Internal Coordinates

Z-matrix-type coordinates are often a preferable choice as they allow to describe the natural

motion of the molecule by mostly independent variation of the internal coordinates. The

lower the correlation between the coordinates, the lower is the required rank in the TT

optimization. In TTConf, the Z-matrix is constructed in such a way that every bond rotation

is described by exactly one proper dihedral angle facilitating conformer generation, while

every remaining atom is referenced via improper dihedrals. The order of the atoms is based

on their respective shortest-path distance from the origin, which is chosen to be one of the

two most distant atoms (futher details in the Supporting Information Sec. 1).

3.3 Identification of Relevant Dihedrals

Within the set of internal coordinates, we need to identify dihedral angles, that correspond to

rotatable bonds. For this purpose, the Wiberg bond orders (WBOs) at the GFN2-xTB level

of theory are evaluated. All bonds with WBO<1.1 are characterized as single bonds and

considered to be rotatable, while bonds with higher WBOs are assumed to not contribute to

the conformational degrees of freedom. The only exceptions for this criterion are hydroxyl

groups, which are rotated regardless of the respective bond order, to allow for modification

of carboxyl- and phosphate groups. As for example, the rotation of methyl groups primarily
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results in different rotamers, those bond rotations can be excluded from the conformer search.

For this purpose, tetrahedrally coordinated atoms are identified and their direct neighboring

atoms are checked for equivalence using atomic priorities as implemented in the molbar

package.55 If three neighbors have the same priority, the respective bond rotation can only

lead to rotamers. Hence, this torsion is discarded for the conformational sampling. This

provides a more general criterion that covers not only methyl, but also tert.-butyl and CF3

groups as well. In addition to bond rotations, asymmetrically substituted nitrogen centers

are identified that can be inverted by modification of the improper dihedral angle of one

of its substituents (nitrogen inversion). Finally, flexible ring structures are identified which

require separate treatment to avoid ring opening when changing dihedral angles in the ring.

The description of rings is detailed in Sec. 3.6. The order of relevant dihedrals within the

TT representation is equal to their order within the Z-matrix. Since the Z-matrix follows

the longest chain of atoms, neighboring bonds are usually described via adjacent nodes in

the TT. However, at branching points in the molecule, this cannot be realized.

3.4 Conformer Generation

The TT cross approximation facilitates the conformer search task by decomposing it into

sequential updates of dihedrals of individual parts of the molecule. If there is no information

on favorable conformations available in the beginning, the TT is initialized randomly and

updated after each step. More specifically, the tail configurations contain only random num-

bers in the first sweep and subsequentially get replaced by the optimum values when passing

through the TT. The evaluation of a core tensor involves generation of new geometries based

on the respective combinations of dihedral angles, calculation of the corresponding energies

(after a local geometry optimization) according to Sec. 3.5, and selection of the r best head

conformations to update the TT (Fig. 2). Processing every tensor core once is referred to as

one sweep. After a sweep is completed, the search direction is reversed. TTConf terminates

after a specified number of sweeps has been completed.
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Figure 2: Representation of the overall global minimization procedure.

The conformer generation for a single core tensor is illustrated by the example of Raltit-

rexed in Fig. 3 A. In this example the head conformations are combinations of θ0 and θ1, the

tail conformations include θ3 to θ7, while all allowed values of θ2 are sampled. The respective

combinations result in the third order tensor depicted in Fig. 3 B.

The subsequent selection of the new head conformations is shown in Fig. 4. For this purpose,

the respective energies are calculated and the corresponding third order tensor is flattened

along the dimension of tail conformations. Within the resulting matrix the new head confor-

mations are selected based on the two columns leading to the maximum volume submatrix

as described in Section 2.2.
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Figure 3: Conformer space of Raltitrexed represented in terms of a TT. As an example,
we focus on the third rotatable bond — highlighted in pink (θ2) — and chose 6 values for
its dihedral angle and a rank of 2 for the other edges. At the third edge during the sweep
through the TT, we already found two (rank = 2) head conformations, i.e. two sets of
values for θ0 and θ1. These two head conformations are combined with 6 dihedral values for
the current bond and two tail conformations, i.e., two sets of values for θ3 through θ7. The
energy can be represented as three dimensional tensor with 24 elements, shown as cube in
panel B. In panel B we additionally show selected structures indicating the changes along
the 3 axes of the cube, where the parts of the molecule remaining constant are transparent.
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Figure 4: Update of the TT determining the new head conformations going into the fourth
node. The cube at the third edge is flattened to a (2×12) matrix, where the colors indicate the
relative energy of the conformer relative to the initial structure. The new head conformations
are found as two columns of the matrix for which the volume of the (2×2) matrix is maximal.

3.5 Potential Energy Evaluation

To calculate the energy corresponding to a certain set of torsion angles, the initial (input)

structure is modified in the respective internal coordinates and subsequently converted back

to Cartesian coordinates. To keep the number of MM or QM calculations minimal, the

adjacency matrix is calculated for the newly generated conformer (according to Sec. 3.1)

and compared to the initial atomic connectivity. Any differences to the initial graph in-

dicate clashing parts of the molecule, which most likely lead to unreasonable geometries

after gradient optimization. Therefore, the respective geometries are not further considered

and are assigned an arbitrary energy value of +∞. Instead of computing only single-point

energies at each generated conformer geometry, every considered geometry is optimized at

the requested level of theory to its nearest local minimum. After re-evaluating the respec-

tive atomic connectivity, all optimized conformers with matching topology are added to a

conformer ensemble. The ensemble is filtered for duplicates based on the pairwise energy

difference, RMSD, and relative difference in rotational constants after every tensor core eval-
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uation. This is done to reduce memory usage by storing only conformers within the requested

energy window (default 6 kcalmol−1 relative to the lowest conformer found).

3.6 Generation of Ring Conformers

Ring structures need to be treated differently from acyclic bond rotations and nitrogen in-

versions, as an independent variation of dihedrals inside ring systems leads to bond breaking.

Therefore, rings are identified in advance and the entire ring conformation is used as a single

variable in the overall conformer search instead of individual torsion angles. For this purpose,

a separate modified TT optimization is performed for every ring by variation of individual

dihedral angles of the flexible bonds inside the ring. This obviously leads to ring-opened

structures that are invalid candidates as conformers. To ensure intact ring structures after

such an individual bond torsion modification, ring “repair” is achieved through a structure

optimization with a harmonic force field as used in the structure idealization of the MolBar

identifier.55 This force field energy expression is based on harmonic potentials for every co-

valently bonded atom pair as defined by the initial adjacency matrix. Additionally, weak

Coulomb-type repulsion is included for every non-bonded atom pair. Harmonic potentials

are also included for every bond angle between three neighboring atoms and for improper

(i.e. non-torsion) dihedral angles. Double and triple bonds are constrained via harmonic

potentials for respective proper dihedral angles. The reference values for the harmonic po-

tentials are calculated based on the initial molecular geometry (see Ref. 55 for details).

From the resulting ring conformer ensembles, up to 11 ring conformations are determined

based on their corresponding conformer energy. Bond distances, angles, and torsions might

all differ between those ring conformations, and are hence saved to characterize each ring

conformer. Hence, the entire molecular conformational space used in the final TT opti-

mization is now expressed as combination of individual bond rotations, nitrogen inversions,

and different ring conformers. In our implementation, spiro- and bicyclic ring structures are

treated as single fragment.
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4 Computational details

All calculations were performed on an AMD EPYC 7763 using 8 threads and 16 GB of mem-

ory. Unless stated otherwise xtb 6.7.0,56 CREST 3.0.152,53 and MolBar 1.1.157 were used.

The TTConf calculations were performed with an in-house program written in Python.58 All

CREST MTD-based conformer searches were run with the default settings. The calculations

were performed without solvation corrections.

5 Results and discussion

5.1 Benchmarking for Drug-like Molecules (CD25)

For a first assessment, the CD25 benchmark set introduced by Pracht and Grimme was

chosen, as it provides a diverse set of organic molecules covering a wide range of molecular

sizes and compositions (Fig. S3).59 Those molecules were analysed with TTConf at three

different settings of rank r and number of sweeps s using CREST as reference. We used

the energy difference of the lowest TTConf and CREST conformers (∆E) and the relative

runtime to compare the performance of both conformational sampling approaches (Fig. 5).
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Figure 5: Energy deviation ∆E = Emethod − Emin of the lowest conformer obtained with
each method relative to the overall lowest one found (top). Relative runtimes and number
of atoms of the molecules in the CD25 dataset. Three different TTConf settings are shown.
r defines the considered rank in the TT optimization and s is the number of sweeps.

Considering the energy deviations we observe that the most basic setting (r = s = 2)

already provides comparable accuracy to CREST for most of the benchmark molecules.

Pregabalin is shown as one example in Fig. 5. On average, a speedup of an order of magnitude

can be achieved with these settings compared to an MTD-based conformer search with the

CREST. However, with increasing complexity of the molecule, the conformer search becomes

more challenging, requiring an increase of r and s to maintain a high accuracy as can be seen,

e.g., for Oseltamivir. Only a few cases require settings beyond r = s = 4 like Rosuvastatin.

This is, to some extent, attributed to intramolecular non-covalent interactions as exemplified

by the lowest energy conformers of Rosuvastatin (Fig. 6 a).
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Figure 6: Panel a): lowest energy conformer of Rosuvastatin obtained with CREST and
TTConf(r = 6, s = 8) showing intramolecular hydrogen bonds. Finding this conformer with
TTConf required a comparably large number of sweeps. Panel b): lowest energy conformer of
Sofosbuvir obtained with CREST. Panel c): TTConf(r = 6, s = 8) conformer of Sofosbuvir
most similar to the CREST conformer. The main difference to panel b) is mostly due to the
nitrogen inversion that had not been recognized in TTConf.

In this example, the structure dominating element is a hydrogen bond between two oppo-

site ends of the molecule which requires the algorithm to recognize the favorable combination

of several bond orientations eventually enabling the hydrogen bond. As this interaction of

distant functional groups is due to a specific combination of multiple bond torsions and not

well represented by two neighboring bond torsions alone, it is difficult to capture with low

rank TT approximations.

Among the CD25 benchmark set, Sofosbuvir is the only example, where the energy

deviation runs into a limit of approximately 1 kcalmol−1, while the computational demand

and the associated runtime increases significantly. Comparing the generated CREST and

TTConf ensembles reveals, that the TTConf ensemble includes a structure fairly similar to

the lowest energy CREST conformer primarily differing in the configuration of one nitrogen

atom (Fig. 6 b and c). In this case, the mentioned nitrogen atom was not recognized as

invertible by TTConf, hence restricting direct access to the global minimum despite random

inversion upon gradient optimizations. Therefore, TTConf is not able to invert the respective

configuration systematically and reach the global minimum, which requires a more robust
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identification algorithm of those nitrogen atoms in future developments.

5.2 Ring Sampling

While TTConf is primarily designed to sample acyclic structures, it also includes a gen-

erally applicable ring variation routine as outlined in Sec. 3.6. For a quick overview, the

most common ring structures in natural products according to Chen et al. were investigated

(molecules 1-14) as well as some more complex ring structures (molecules 15-21).60 The

respective structural formulas are shown in Fig. S2. The respective energy deviations and

relative runtimes compared to the MTD-based CREST for the 21 tested molecules are shown

in Fig. 7.

Figure 7: Energy deviations ∆E = ETTConf − ECREST and relative runtimes compared to
CREST MTD-based conformer sampling of typical small ring structures (r = 3, s = 8). For
the structural formulas, see Fig. S2

For most of the test cases, CREST and TTConf identified the same conformer as global

minimum. The largest deviations occur particularly for nitrogen containing compounds 15

and 20 with an energy deviation of 0.5 and 0.9 kcalmol−1, respectively. Comparing the

respective conformer ensembles as shown in Fig. 8 for ring structure 20 reveals that the
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major deviation originates from different configurations of nitrogen atoms as it was already

observed for Sofosbuvir (Fig. 6 b and c). Since inversions are realized by modification of

improper dihedral angles, endocyclic nitrogen atoms are prone to errors. Depending on how

the Z-matrix is constructed the respective nitrogen atom can be part of the ring closing bond,

making it impossible to define an improper dihedral angle and thus preventing inversion.

a) b)

Figure 8: Structure comparison of a) the lowest energy CREST conformer and b) the most
similar TTConf conformer of ring structure 20, which showed the largest deviation in Fig. 7.
The difficulty arises primarily from the handling of the nitrogen inversion in TTConf.

Considering the relative runtimes, rather small benefits for larger ring structures are

found with TTConf. Especially bicyclic compounds (13 and 14) or spirocyclic compounds

(16 and 19) take as long as or even slightly longer than CREST, while providing comparable

accuracy.

5.3 Statistics on Large Conformational Dataset: BACE

To achieve a more comprehensive view of TTConf’s performance, the BACE dataset was

chosen comprising 1511 organic molecules ranging from 17 to 184 atoms. Different from

CD25, this set also covers charged species.61 As the dataset provides only conformational

energies that were generated with CREST (version 2.9) but no information on the respective

runtimes, the present comparison focuses solely on the accuracy of TTConf in finding the

lowest energy conformer. For the TTConf runs, r = 3, s = 8 was chosen as a reasonable
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compromise of runtime and accuracy (Sec. 5.4). To further interpret the origin for observed

energy deviations, the dataset was divided based on the molecules’ flexibility and degree of

branching. As measure for the flexibility, the number of flexible torsions is used. The degree

of branching is determined as shown in Fig. 9 taking into account only the molecule’s flexible

bonds. Out of the 1511 molecules, 15 molecules showed varying MolBar identifiers55 in the

reference CREST ensembles. Since this indicates changes in the topology and topography

that are outside the pure conformational space, those molecules were excluded from the

investigation.

Figure 9: Definition of linear and branched structures according to the respective flexible
bonds (highlighted in blue).

In Fig. 10, the distribution of the respective energy deviations of the lowest energy CREST

and TTConf conformers are shown along with their average value. Regarding the entire

dataset, the distribution is centered close to 0 kcalmol−1 primarily covering the range from

−2 to 2 kcalmol−1 leading to an average deviation of only 0.58 kcalmol−1 in total. However,

in several cases, deviations of >5 kcalmol−1 can be observed, where TTConf struggles to

identify the global minimum. Vice versa, though less frequently, TTConf is also able to

outperform CREST in some cases.
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Figure 10: Distribution of the energy deviations of CREST and TTConf for the BACE
dataset comprising 1511 organic molecules ranging from 17 to 184 atoms. Apart from the
results for the entire dataset (top), the results for with subdivision for flexibility and branch-
ing is shown as well (bottom).

Taking a look at the influence of the system’s flexibility and the number of branching

points on the energy deviation, it becomes clear that TTConf performs better for smaller,

predominantly linear molecules. As already indicated by the CD25 dataset, a higher rank

approximation is beneficial, whenever correlations between distant bonds occur, e.g., when

intramolecular non-covalent interactions play a role. This observation is confirmed, as higher

deviations are found for molecules with more than 15 flexible bonds, where correlations be-

tween distant bonds are more likely. However, the more critical point seems be the molecular

connectivity. While predominantly linear structures can be described with high accuracy at

an average energy deviation of 0.17 kcalmol−1, strongly branched molecules lead to a much

broader distribution including several outliers and therefore a higher average deviation of

0.92 kcalmol−1. This indicates a limitation of the inherently linear structure of the TT, since

some neighboring bonds (at the branching point) are not found in consecutive order in the

TT.
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5.4 Optimal Settings

As the accuracy and time demand of the TTConf approach are strongly dependent on the

assumed rank (r) and the number of sweeps (s), proper settings have to be determined

to ensure reliable results at reasonable computational effort. Increasing r or s results in

sampling of a larger portion of the conformational space, leading to a higher accuracy in

finding the lowest energy conformer. While the choice of r influences the number of evaluated

conformations quadratically, s contributes only linearly. To achieve the target accuracy,

it is thus desirable to use an increased number of sweeps while working with a low-rank

approximation. However, for an optimal cost-accuracy ratio r and s should be chosen as small

as possible, while maintaining the desired accuracy. For this purpose, the CD25 benchmark

set was sampled with a total of 20 different combinations of r and s using the mean ∆E

and relative runtime (with respect to CREST’s MTD conformer sampling) as performance

criteria (Fig. 11).

Figure 11: Assessment of the optimal settings for rank and number of sweeps based on the
CD25 dataset. Comparison of the mean energy deviation of the respective lowest energy
TTConf and CREST conformers (left) and the associated mean relative runtimes (right).

As expected, ∆E decreases when choosing a higher rank and number of sweeps, but

significantly increases the runtime of the sampling procedure. While r = 2, s = 2 provides

an average 24-fold speed up, the average ∆E of 0.87 kcalmol−1 indicates an insufficient
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accuracy on average. As seen in Fig. 5, this deviation originates primarily from large and

more branched molecules like Ritonavir (max. deviation of 8 and 6 kcalmol−1), while the

majority of less branched molecules is handled with sufficient accuracy already at this level.

The computationally most demanding setting of r = 6, s = 8 on the other hand shows

excellent accuracy, but at a significantly reduced speedup of just 1.5 on average. The setting

r = 3, s = 8 provides a good balance between cost and accuracy with an average deviation

∆E of 0.11 kcalmol−1 and an average speed up of 5.6 compared to CREST’s MTD.

Based on these results, we suggest three default settings labeled fast, normal and accurate as

shown in Fig. 11. Besides using fixed default settings, Fig. 5 indicates that a molecule-specific

adjustment of the required rank and number of sweeps based on a molecule’s flexibility and

number of branches can be beneficial. For smaller, less branched molecules and smaller

molecules like Pregabalin, the “fast” setting (r = 2, s = 2) is sufficient, while branched

systems and longer chains (with potential for intramolecular noncovalent interactions) require

more effort. In that case, the “normal” (r = 3, s = 8) or even “accurate” settings (r = 6, s = 8)

should be used. In the supporting information, we provide additional results for selected

molecules (Fig. S7).

6 Conclusions

We present a novel systematic conformer search approach for the investigation of drug-

like molecules called tensor train conformer search (TTConf). Our approach addresses the

inherent combinatorial explosion of grid search algorithms by using a low-rank tensor train

(TT) representation of the high dimensional tensor of dihedral angle combinations. Through

TT cross approximation this low-rank representation can be achieved with limited number

of energy evaluations, which are typically the most time demanding task. As the algorithm

allows the scaling to be reduced from exponential to polynomial, exploration of the low energy

conformational space of drug-like molecules can be achieved at a significantly reduced time
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demand compared to the current state-of-the-art metadynamics-based conformer search as

implemented in CREST. The current applicability is primarily acyclic molecules, while it was

shown that also different ring structures can be treated. This makes TTConf very suitable

for sampling conformers of a broad variety of organic molecules. Future developments will

focus on an improved ring sampling algorithm, tailoring the tensor network to the respective

molecule for a better description of heavily branched structures. Furthermore, the approach

is to be extended to metal-organic compounds.
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