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Abstract

Exploring the conformational space of molecules remains a challenge of fundamental
importance to quantum chemistry: identification of relevant conformers at ambient con-
ditions enables predictive simulations of almost arbitrary properties. Here, we propose
a novel approach to enable conformational sampling of large organic molecules where
the combinatorial explosion of possible conformers prevents the use of a brute-force sys-
tematic conformer search. We employ tensor trains as a highly efficient dimensionality
reduction algorithm, effectively reducing the scaling from exponential to polynomial.
In our approach, the conformational search is expressed as global energy minimiza-
tion task in a high-dimensional grid of dihedral angles. Dimensionality reduction is
achieved through a tensor train representation of the high-dimensional torsion space.

The performance of the approach is assessed on a variety of drug-like molecules in
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direct comparison to the state-of-the-art metadynamics based conformer rotamer en-
semble sampling tool (CREST). The comparison shows significant acceleration of up
to an order of magnitude, while maintaining comparable accuracy. More importantly,
the presented approach allows treatment of larger molecules than typically accessible

with metadynamics.
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1 Introduction

While the structure activity relationship (SAR) is a well known concept to every chemist,
drawing a causal link between a molecule’s structure and its properties remains a major
challenge of computational chemistry. In addition to the chemical composition and connec-
tivity, the 3-dimensional arrangement of a molecule’s atoms largely impacts its physical and
chemical properties. Therefore, the search for all thermally accessible conformations is cru-
cial for chemical simulations.! For this purpose, numerous approaches have been developed
over the past decades.? Each of these approaches requires a structure generation procedure
and subsequent energetic ranking of the obtained geometries.

While gradient optimization algorithms are suitable to identify local minima on the poten-
tial energy surface (PES), they provide no information on whether the overall energetically
lowest structure is obtained.?® To determine the global minimum on the PES, so-called global
optimization algorithms are required.* Finding relevant minima in conformational space tra-
ditionally relies on initial guesses constructed from intuition, which makes it difficult to scale
to systems with many degrees of freedom. To identify the global minimum automatically,
multiple structures across the conformational space need to be examined. However, with
increasing size and flexibility of a molecule, the number of possible conformations drastically
increases necessitating efficient procedures for this global optimization problem. An early
approach by Saunders is built upon Metropolis Monte Carlo (MC) simulations utilizing ran-
dom displacements of atoms in Cartesian space. The acceptance rate of each individual step
is based on molecular mechanics (MM) energies after subsequent gradient optimization.®
Even for rather small molecules, the 3N-6 internal degrees of freedom lead to a huge search
space. A related global optimization approach is the basin hopping approach by Wales and
Doye,% which was later adapted by Goedecker.” For conformational problems, neglecting
rigid bond distances and valence angles allows for a significant simplification of the coor-
dinate space as demonstrated by Chang et al.® As the individual modification of dihedral

angles is not possible without damaging cyclic structures, the approach is primarily suited
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for acyclic molecules. Lipton and Still extended the method to cyclic systems by applying
ring closure constraints during the gradient optimization.®

In contrast to relying on entirely random structure modifications, molecular dynamics (MD)
simulations provide a more chemically motivated strategy to conformer sampling. During an
MD simulation, the internal motion of a molecule is simulated for a certain time at a fixed
temperature. A conformer ensemble is generated from an MD trajectory by extracting snap-
shots at fixed time intervals and optimizing the structures using standard gradient methods.
The application of MD to smaller oligopeptides was shown by Brooks et al. and even to an en-
tire protein by Elber and Karplus using myoglobin as example.!®!! While MD simulations,
in principle, guarantee to converge to the global minimum, the required simulation times
and the associated number of energy evaluations is usually unfeasible, thus limiting MD to
a rather local analysis of the conformational space.'? To accelerate structural changes upon
simulation, two general approaches can be pursued: either increasing the internal energy of
the system by raising the temperature or effectively flattening the PES to facilitate passing
interconformational energy barriers. The former approach is applied in simulated annealing,
which is applicable to MD as well as to Metropolis MC simulations.!® Simulated annealing
mimics controlled crystal growth by starting the simulation at high temperatures and then
gradually lowering it, which was demonstrated as a viable method for conformer sampling by
Wilson et al. in the context of MC and by Lelj et al. for MD simulations. 4! Alternatively,
the PES can be flattened by either a constant boost potential as introduced by Hamelberg et
al. or a dynamically updated bias potential as described by Laio and Parrinello significantly
lowering the required time demand.'6:'” The latter is referred to as metadynamics (MTD)
simulation, which was much simplified by Grimme using the Cartesian root mean square
deviation (RMSD) of the atomic positions as collective variable for constructing the bias
potential.'® Based on this strategy, Pracht et al. developed CREST making primarily use of
MTD but also MD simulations as well as genetic crossing (GC) to generate conformer and

rotamer ensembles of almost any type of molecules.®?° Here, rotamers refer to degenerate
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conformers that only vary in permutations of chemically equivalent atoms.

While the aforementioned approaches can eventually lead to the global minimum, they lack
a directional force guiding the algorithm towards the global minimum. Different from that,
buildup approaches are guided by knowledge of favorable conformations of fragments, which
are used to construct the molecule’s conformers. This fragmentation procedure was applied
to the analysis of a pentapeptide constructed from amino acid conformers by Vasquez and
Scheraga.?! However, the definition of fragments is, to some extent, arbitrary and the quality
of the final ensemble heavily relies on the availability of fragments in the respective data base.
Therefore, a more general approach treating every possible bond rotation explicitly would
be desirable. So far, this has been impossible due to the unfavorable exponential scaling of

systematic conformer search approaches.

Tensor networks have been a powerful tool used in condensed matter physics and chemical
physics to mitigate exponential scaling in multi-dimensional quantum systems.?? A com-
monly known approach is the density matrix renormalization group (DMRG) originally
introduced by White et al., where a tensor train (TT) is used to describe 1D spin lat-
tice systems.?* Another well-known approach is the multi-configurational time-dependent
Hartree (MCTDH) method developed by Meyer and coworkers to describe quantum dynam-
ics of molecules.?* Tensor networks factorize high-dimensional tensors into products of lower
dimensional tensors where the nodes in the network represent the tensors and edges rep-
resent their indices. While tensor networks efficiently deal with high-dimensional systems,
they are limited to applications in linear algebra. Analogously, high-dimensional functions
can be separated into lower dimensional ones using the tensor network formalism by using
tensor network grids. Consequently, a high-dimensional grid is decomposed into multiple
lower-dimensional grids. The first tensor network grid was proposed by Manthe, called the
correlation discrete variable representation (CDVR).?® This idea was later extended from

simple network types to general trees.?6 Recently, the scaling of the approach was drasti-
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cally reduced, and schemes for systematic convergence were developed.?”?® Independently,
Oseledets and coworkers developed the cross approximation scheme for T'Ts which follows
similar ideas but was first developed for the compression of functions.?® The main difference
compared to the CDVR approach is the way in which the different grids are combined and
that lower dimensional grids are subsets of the high-dimensional grid in the cross approxi-
mation. Tensor network grids have a variety of uses including integration, compression, and
optimization.3® In the present work, tensor network grids provide the foundation for our

approach of systematically finding conformers.

Each of the aforementioned approaches inevitably requires numerous energy evaluations,
necessitating either MM or low-cost quantum mechanics (QM) methods to maintain a man-
ageable computational demand. Most prominent examples in the field of organic chemistry
are the General AMBER Force Field (GAFF) originally introduced by Wang et al., par-
ticularly, since the implementation of a new charge model by He et al.. Other prominent
force fields are the most recent versions of OPLS and OpenFF developed by Lu et al. and
Boothroyd et al., respectively.3'35 A comprehensive benchmark by Lim et al. indicates the
superior performance of the latter two methods.?® Regarding large biomolecular systems
predominantly Amber and CHARMM force fields are used, typically designed for the appli-
cation to either proteins, nucleic acids, carbohydrates or lipids.3™ %

While MM methods are usually preferred due to their low computational cost, their parametri-
zation usually restricts them to a narrow range of molecules. Hence, they are not suitable for
a universal conformer search approach.?® Most promising for energy evaluation is the GFN
family of methods, in particular the force field GFN-FF and the semiempirical quantum me-
chanics (SQM) method GFN2-xTB.%%47 Since GFN2-xTB is efficient, reproduces molecular
geometries particularly well, and is parametrized for the majority of elements (Z < 86), it is
often the method of choice in quantum chemical investigations of medium-sized organic and

inorganic molecules and is well suited for large conformer screenings.
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2 Theory

2.1 Conformer Search

We formalize the conformer search as the optimization problem arg)r(nin E(X) where E is the
(electronic ground state) energy of an N-atom molecule and X represents the 3N Cartesian
coordinates. Since the energy is usually invariant to translation and rotation, we express
the problem more naturally in terms of the 3N — 6 internal coordinates (denoted by Q)
and instead solve argmin F(Q). Suitable choice of coordinate representation drastically
reduces correlation be‘?ween the coordinates, which facilitates finding minima. We use bond,
angle, and torsion (BAT)-coordinates, Q (described in detail later), and select only the
relevant dihedral angles. We represent them on a grid which results in a tensor Ej,..;, =
E(Q,...,) storing the molecule’s potential energy as a function of the internal coordinates
Q. Here, iy ---ig denote the individual indices of the d-dimensional tensor. Searching all
geometries would scale exponentially in the number of rotatable bonds. We avoid this by
using T'Ts to quickly search for the optimal coordinates corresponding to the energetically
lowest conformer with only polynomial effort. In our approach, we combine the search with
a local gradient optimizer, so that the tensor network mainly serves as a tool to generate
points in the vicinity of multiple different suitable local minima and to avoid clustering of

points in one or a few minima.

2.2 Tensor Train Optimization

The TT representation of an order d tensor A with elements A;, ;, reads

r1...Tq

1 2 d
Ai1---id = Z Ai1l1 'Ahillz Tt Aldid' (1)
li.dg
where the original tensor is factorized into a sequence of 2nd and 3rd order tensor cores A

with elements Af“k These tensor cores carry new virtual indices l;_; and [; that connect

—1tglg”
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neighboring tensor cores, except for the first and last tensor core which only have a single
virtual index [y and 4, respectively. The upper bounds of the virtual indices, r, ..., 74, are
the called ranks or bond dimensions. In general, the ranks required to accurately represent
tensors A can grow exponentially order d. In many practical applications, however, small 7y,
are sufficient to represent the tensor and we say that it has a low-rank TT representation.*®
In principle, the T'T representation can be obtained by performing a sequence of singular
value decompositions on the core tensor. This, however, would require a prior: knowledge
of the large core tensor.*® If the full tensor itself is unknown, the TT representation of A
can be generated by evaluating elements on demand from a function A;, ;, = A(zi,, ..., %i,)-
Furthermore, it is desirable to evaluate this function very rarely, since evaluating the function
itself is costly. The TT cross approximation?® enables us to compress a tensor into T'T format
from accessing just a few elements. Additionally, we obtain an element close to the modulus
largest value as an entry in one of the core tensors. Due to these properties, it is a highly
efficient algorithm for finding function minima (or maxima).*?

We first introduce the matrix cross approximation and extend the discussion to the more
general TT cross approximation. Matrix cross approximation®® aims at finding a rank-r
representation of a matrix with elements A;; by accessing only a few rows and columns.

The target representation consists of a set of skeleton rows with indices I, and columns I.

approximating the matrix as

Ayj =~ Z Az‘ICAZ}]TAjIM (2)

I1,
where Al_cll,. denotes elements of the inverse of the so-called cross matrix Ay ;. If A is of
rank r and described by any r linear independent rows and columns, the representation is
accurate. If not, the choice of rows and columns matters. A convenient choice is the set of
rows and columns that maximizes the volume of the cross matrix |det(A)| = [[, ox where
o, are the singular values of the cross matrix.?* The volume of a matrix is closely related
to the Frobenius norm |[|Al|p = Y, 07 of a matrix, but there exist algorithms that allow

performing updates on the volume with preferable scaling. The matrix cross approximation

https://doi.org/10.26434/chemrxiv-2024-jjns1 ORCID: https://orcid.org/0000-0003-3242-496X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0


https://doi.org/10.26434/chemrxiv-2024-jjns1
https://orcid.org/0000-0003-3242-496X
https://creativecommons.org/licenses/by-nc-nd/4.0/

proceeds as follows:

1. Choose a random set of linear independent columns /..

2. Find the r x r submatrix with maximal volume in the rectangular column submatrix

matrix A(:, I.) using the maxvol algorithm® (here we use matlab notation).
3. Set I, to the rows obtained in the maxvol algorithm.

4. Now search for the r x r submatrix in the row submatrix A(I,,:) using maxvol and set

1. to the obtained columns.

5. Continue these iterations, optimizing row and column indices, until convergence is

reached.

The TT cross approximation performs a matrix cross approximation, but on the flattened
tensor cores at every node. At a site k, the r x N x r tensor is reshaped to a (r- N) x r
matrix and the maximal volume submatrix is evaluated. The resulting rows and columns
determine which elements of the high-dimensional tensors are evaluated at the next site.
A macro iteration or sweep entails performing the previously described micro-iterations for
every tensor core. The sweeps are performed back and forth over all tensor cores until
convergences is reached. We refer the interested reader for more details to a recent in-
depth review of tensor cross approximation by N. Ferndndez et al.®® This work also presents
a partially rank-revealing LU-decomposition as a more stable alternative to the maxvol

algorithm.

3 The Tensor Train Conformer Search (TTConf)

In this work, we present the tensor train conformer search (TTConf), a tool for the global op-
timization of molecular conformations. T'T optimization is used to screen many local minima
in internal coordinates of the molecule. We combine it with gradient-based local optimiza-

tion to converge energies within local minima and thereby reduce the required T'T ranks. For
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the scope of this work, we will use BAT coordinates to describe molecular conformations and
use a subset of dihedral angles, i.e., the ones characterizing single bond rotations, to span
the conformationally relevant coordinate space. While BAT coordinates provide a natural
description for a wide variety of molecules, other kinds of internal coordinates may be better
suited for certain substructures like rings. The design of more elaborate internal coordinates,
however, will be part of future work. For this work, we simply work in the space of torsion
angles for the global optimization and combine it with a local geometry optimization to
yield the entries of the high dimensional tensor in Eq. 1. The quality of conformers found by
TTConf is expected to rely heavily on the chosen theory level that defines the PES. TTConf
works with any kind of energy function that could be coming from force field, SQM, and
ab inito approaches. In this work, the single-point evaluations and gradient optimization
are carried out using the GFN family of methods which provide a good trade off between
speed and accuracy. To perform geometry optimizations in parallel the mdopt subroutine of
CREST (version 3.0.1)°? is used in combination with the interface to the tblite package.?
In the following, we will describe the details of the TTConf conformer sampling algorithm

as outlined in Fig. 1.

Initial geometry
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3.1 Determining the Molecular Graph Representation

Based on a user-provided input structure (in Cartesian coordinates), an initial gradient
optimization is performed at the requested level of theory to ensure a chemically reasonable
starting geometry. From the resulting geometry, covalent bonds are identified from which a
molecular graph is generated. The graph setup and analysis are realized with the Python
package networkx, which facilitates the determination of the pairwise shortest-path distances

and identification of ring structures.*

3.2 Setup of Internal Coordinates

Z-matrix-type coordinates are often a preferable choice as they allow to describe the natural
motion of the molecule by mostly independent variation of the internal coordinates. The
lower the correlation between the coordinates, the lower is the required rank in the TT
optimization. In TTConf, the Z-matrix is constructed in such a way that every bond rotation
is described by exactly one proper dihedral angle facilitating conformer generation, while
every remaining atom is referenced via improper dihedrals. The order of the atoms is based
on their respective shortest-path distance from the origin, which is chosen to be one of the

two most distant atoms (futher details in the Supporting Information Sec. 1).

3.3 Identification of Relevant Dihedrals

Within the set of internal coordinates, we need to identify dihedral angles, that correspond to
rotatable bonds. For this purpose, the Wiberg bond orders (WBOs) at the GFN2-xTB level
of theory are evaluated. All bonds with WBO<1.1 are characterized as single bonds and
considered to be rotatable, while bonds with higher WBOs are assumed to not contribute to
the conformational degrees of freedom. The only exceptions for this criterion are hydroxyl
groups, which are rotated regardless of the respective bond order, to allow for modification

of carboxyl- and phosphate groups. As for example, the rotation of methyl groups primarily
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results in different rotamers, those bond rotations can be excluded from the conformer search.
For this purpose, tetrahedrally coordinated atoms are identified and their direct neighboring
atoms are checked for equivalence using atomic priorities as implemented in the molbar
package.®® If three neighbors have the same priority, the respective bond rotation can only
lead to rotamers. Hence, this torsion is discarded for the conformational sampling. This
provides a more general criterion that covers not only methyl, but also tert.-butyl and CF3
groups as well. In addition to bond rotations, asymmetrically substituted nitrogen centers
are identified that can be inverted by modification of the improper dihedral angle of one
of its substituents (nitrogen inversion). Finally, flexible ring structures are identified which
require separate treatment to avoid ring opening when changing dihedral angles in the ring.
The description of rings is detailed in Sec. 3.6. The order of relevant dihedrals within the
TT representation is equal to their order within the Z-matrix. Since the Z-matrix follows
the longest chain of atoms, neighboring bonds are usually described via adjacent nodes in

the TT. However, at branching points in the molecule, this cannot be realized.

3.4 Conformer Generation

The TT cross approximation facilitates the conformer search task by decomposing it into
sequential updates of dihedrals of individual parts of the molecule. If there is no information
on favorable conformations available in the beginning, the TT is initialized randomly and
updated after each step. More specifically, the tail configurations contain only random num-
bers in the first sweep and subsequentially get replaced by the optimum values when passing
through the TT. The evaluation of a core tensor involves generation of new geometries based
on the respective combinations of dihedral angles, calculation of the corresponding energies
(after a local geometry optimization) according to Sec. 3.5, and selection of the r best head
conformations to update the TT (Fig. 2). Processing every tensor core once is referred to as
one sweep. After a sweep is completed, the search direction is reversed. TTConf terminates

after a specified number of sweeps has been completed.
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Figure 2: Representation of the overall global minimization procedure.

The conformer generation for a single core tensor is illustrated by the example of Raltit-
rexed in Fig. 3 A. In this example the head conformations are combinations of 6y and 6, the
tail conformations include 65 to 07, while all allowed values of 65 are sampled. The respective
combinations result in the third order tensor depicted in Fig. 3 B.

The subsequent selection of the new head conformations is shown in Fig. 4. For this purpose,
the respective energies are calculated and the corresponding third order tensor is flattened
along the dimension of tail conformations. Within the resulting matrix the new head confor-
mations are selected based on the two columns leading to the maximum volume submatrix

as described in Section 2.2.
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Figure 3: Conformer space of Raltitrexed represented in terms of a TT. As an example,
we focus on the third rotatable bond — highlighted in pink (6;) — and chose 6 values for
its dihedral angle and a rank of 2 for the other edges. At the third edge during the sweep
through the TT, we already found two (rank = 2) head conformations, i.e. two sets of
values for 6, and #;. These two head conformations are combined with 6 dihedral values for
the current bond and two tail conformations, i.e., two sets of values for 63 through ;. The
energy can be represented as three dimensional tensor with 24 elements, shown as cube in
panel B. In panel B we additionally show selected structures indicating the changes along

the 3 axes of the cube, where the parts of the molecule remaining constant are transparent.
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Figure 4: Update of the TT determining the new head conformations going into the fourth
node. The cube at the third edge is flattened to a (2x 12) matrix, where the colors indicate the
relative energy of the conformer relative to the initial structure. The new head conformations
are found as two columns of the matrix for which the volume of the (2 x 2) matrix is maximal.

3.5 Potential Energy Evaluation

To calculate the energy corresponding to a certain set of torsion angles, the initial (input)
structure is modified in the respective internal coordinates and subsequently converted back
to Cartesian coordinates. To keep the number of MM or QM calculations minimal, the
adjacency matrix is calculated for the newly generated conformer (according to Sec. 3.1)
and compared to the initial atomic connectivity. Any differences to the initial graph in-
dicate clashing parts of the molecule, which most likely lead to unreasonable geometries
after gradient optimization. Therefore, the respective geometries are not further considered
and are assigned an arbitrary energy value of +o00. Instead of computing only single-point
energies at each generated conformer geometry, every considered geometry is optimized at
the requested level of theory to its nearest local minimum. After re-evaluating the respec-
tive atomic connectivity, all optimized conformers with matching topology are added to a
conformer ensemble. The ensemble is filtered for duplicates based on the pairwise energy

difference, RMSD, and relative difference in rotational constants after every tensor core eval-
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uation. This is done to reduce memory usage by storing only conformers within the requested

energy window (default 6kcalmol™" relative to the lowest conformer found).

3.6 Generation of Ring Conformers

Ring structures need to be treated differently from acyclic bond rotations and nitrogen in-
versions, as an independent variation of dihedrals inside ring systems leads to bond breaking.
Therefore, rings are identified in advance and the entire ring conformation is used as a single
variable in the overall conformer search instead of individual torsion angles. For this purpose,
a separate modified T'T optimization is performed for every ring by variation of individual
dihedral angles of the flexible bonds inside the ring. This obviously leads to ring-opened
structures that are invalid candidates as conformers. To ensure intact ring structures after
such an individual bond torsion modification, ring “repair” is achieved through a structure
optimization with a harmonic force field as used in the structure idealization of the MolBar
identifier.? This force field energy expression is based on harmonic potentials for every co-
valently bonded atom pair as defined by the initial adjacency matrix. Additionally, weak
Coulomb-type repulsion is included for every non-bonded atom pair. Harmonic potentials
are also included for every bond angle between three neighboring atoms and for improper
(i.e. non-torsion) dihedral angles. Double and triple bonds are constrained via harmonic
potentials for respective proper dihedral angles. The reference values for the harmonic po-
tentials are calculated based on the initial molecular geometry (see Ref. 55 for details).
From the resulting ring conformer ensembles, up to 11 ring conformations are determined
based on their corresponding conformer energy. Bond distances, angles, and torsions might
all differ between those ring conformations, and are hence saved to characterize each ring
conformer. Hence, the entire molecular conformational space used in the final TT opti-
mization is now expressed as combination of individual bond rotations, nitrogen inversions,
and different ring conformers. In our implementation, spiro- and bicyclic ring structures are

treated as single fragment.
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4 Computational details

All calculations were performed on an AMD EPYC 7763 using 8 threads and 16 GB of mem-
ory. Unless stated otherwise xtb 6.7.0,°6 CREST 3.0.1°2% and MolBar 1.1.1°7 were used.
The TTConf calculations were performed with an in-house program written in Python.%® All
CREST MTD-based conformer searches were run with the default settings. The calculations

were performed without solvation corrections.

5 Results and discussion

5.1 Benchmarking for Drug-like Molecules (CD25)

For a first assessment, the CD25 benchmark set introduced by Pracht and Grimme was
chosen, as it provides a diverse set of organic molecules covering a wide range of molecular
sizes and compositions (Fig. S3).%" Those molecules were analysed with TTConf at three
different settings of rank r and number of sweeps s using CREST as reference. We used
the energy difference of the lowest TTConf and CREST conformers (AE) and the relative

runtime to compare the performance of both conformational sampling approaches (Fig. 5).
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Figure 5: Energy deviation AE = FEcthod — Emin of the lowest conformer obtained with
each method relative to the overall lowest one found (top). Relative runtimes and number
of atoms of the molecules in the CD25 dataset. Three different TTConf settings are shown.
r defines the considered rank in the TT optimization and s is the number of sweeps.

Considering the energy deviations we observe that the most basic setting (r = s = 2)
already provides comparable accuracy to CREST for most of the benchmark molecules.
Pregabalin is shown as one example in Fig. 5. On average, a speedup of an order of magnitude
can be achieved with these settings compared to an MTD-based conformer search with the
CREST. However, with increasing complexity of the molecule, the conformer search becomes
more challenging, requiring an increase of r and s to maintain a high accuracy as can be seen,
e.g., for Oseltamivir. Only a few cases require settings beyond r = s = 4 like Rosuvastatin.
This is, to some extent, attributed to intramolecular non-covalent interactions as exemplified

by the lowest energy conformers of Rosuvastatin (Fig. 6 a).
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Figure 6: Panel a): lowest energy conformer of Rosuvastatin obtained with CREST and
TTConf(r = 6,s = 8) showing intramolecular hydrogen bonds. Finding this conformer with
TTConf required a comparably large number of sweeps. Panel b): lowest energy conformer of
Sofosbuvir obtained with CREST. Panel ¢): TTConf(r = 6, s = 8) conformer of Sofosbuvir
most similar to the CREST conformer. The main difference to panel b) is mostly due to the
nitrogen inversion that had not been recognized in TTConf.

In this example, the structure dominating element is a hydrogen bond between two oppo-
site ends of the molecule which requires the algorithm to recognize the favorable combination
of several bond orientations eventually enabling the hydrogen bond. As this interaction of
distant functional groups is due to a specific combination of multiple bond torsions and not
well represented by two neighboring bond torsions alone, it is difficult to capture with low

rank T'T approximations.

Among the CD25 benchmark set, Sofosbuvir is the only example, where the energy
deviation runs into a limit of approximately 1kcalmol™, while the computational demand
and the associated runtime increases significantly. Comparing the generated CREST and
TTConf ensembles reveals, that the TTConf ensemble includes a structure fairly similar to
the lowest energy CREST conformer primarily differing in the configuration of one nitrogen
atom (Fig. 6 b and ¢). In this case, the mentioned nitrogen atom was not recognized as
invertible by TTConf, hence restricting direct access to the global minimum despite random
inversion upon gradient optimizations. Therefore, TTConf is not able to invert the respective

configuration systematically and reach the global minimum, which requires a more robust
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identification algorithm of those nitrogen atoms in future developments.

5.2 Ring Sampling

While TTConf is primarily designed to sample acyclic structures, it also includes a gen-
erally applicable ring variation routine as outlined in Sec. 3.6. For a quick overview, the
most common ring structures in natural products according to Chen et al. were investigated
(molecules 1-14) as well as some more complex ring structures (molecules 15-21).% The
respective structural formulas are shown in Fig. S2. The respective energy deviations and

relative runtimes compared to the MTD-based CREST for the 21 tested molecules are shown

in Fig. 7.

energy deviation
(kcal mol™1)

© o o

H (o)} (o]

o
N
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10!

100 4

relative runtime
(CREST / TTConf)
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molecule number

Figure 7: Energy deviations AF = FE7rcont — Fcrest and relative runtimes compared to
CREST MTD-based conformer sampling of typical small ring structures (r = 3, s = 8). For
the structural formulas, see Fig. S2

For most of the test cases, CREST and TTConf identified the same conformer as global
minimum. The largest deviations occur particularly for nitrogen containing compounds 15
and 20 with an energy deviation of 0.5 and 0.9kcalmol™?, respectively. Comparing the

respective conformer ensembles as shown in Fig. 8 for ring structure 20 reveals that the
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major deviation originates from different configurations of nitrogen atoms as it was already
observed for Sofosbuvir (Fig. 6 b and ¢). Since inversions are realized by modification of
improper dihedral angles, endocyclic nitrogen atoms are prone to errors. Depending on how
the Z-matrix is constructed the respective nitrogen atom can be part of the ring closing bond,

making it impossible to define an improper dihedral angle and thus preventing inversion.

a) b)

Figure 8: Structure comparison of a) the lowest energy CREST conformer and b) the most
similar T'TConf conformer of ring structure 20, which showed the largest deviation in Fig. 7.
The difficulty arises primarily from the handling of the nitrogen inversion in TTConf.

Considering the relative runtimes, rather small benefits for larger ring structures are
found with TTConf. Especially bicyclic compounds (13 and 14) or spirocyclic compounds
(16 and 19) take as long as or even slightly longer than CREST, while providing comparable

accuracy.

5.3 Statistics on Large Conformational Dataset: BACE

To achieve a more comprehensive view of TTConf’s performance, the BACE dataset was
chosen comprising 1511 organic molecules ranging from 17 to 184 atoms. Different from
CD25, this set also covers charged species.%! As the dataset provides only conformational
energies that were generated with CREST (version 2.9) but no information on the respective
runtimes, the present comparison focuses solely on the accuracy of TTConf in finding the

lowest energy conformer. For the TTConf runs, r = 3,s = 8 was chosen as a reasonable
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compromise of runtime and accuracy (Sec. 5.4). To further interpret the origin for observed
energy deviations, the dataset was divided based on the molecules’ flexibility and degree of
branching. As measure for the flexibility, the number of flexible torsions is used. The degree
of branching is determined as shown in Fig. 9 taking into account only the molecule’s flexible
bonds. Out of the 1511 molecules, 15 molecules showed varying MolBar identifiers® in the
reference CREST ensembles. Since this indicates changes in the topology and topography
that are outside the pure conformational space, those molecules were excluded from the
investigation.

Structural Formula

Connectivity of flexible bonds

Cc

b

linear branched

Figure 9: Definition of linear and branched structures according to the respective flexible
bonds (highlighted in blue).

In Fig. 10, the distribution of the respective energy deviations of the lowest energy CREST
and TTConf conformers are shown along with their average value. Regarding the entire
dataset, the distribution is centered close to 0kcal mol™ primarily covering the range from
—2 to 2kcal mol ! leading to an average deviation of only 0.58 kcalmol ™! in total. However,
in several cases, deviations of >5kcalmol™ can be observed, where TTConf struggles to
identify the global minimum. Vice versa, though less frequently, TTConf is also able to

outperform CREST in some cases.
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Figure 10: Distribution of the energy deviations of CREST and TTConf for the BACE
dataset comprising 1511 organic molecules ranging from 17 to 184 atoms. Apart from the
results for the entire dataset (top), the results for with subdivision for flexibility and branch-
ing is shown as well (bottom).

Taking a look at the influence of the system’s flexibility and the number of branching
points on the energy deviation, it becomes clear that TTConf performs better for smaller,
predominantly linear molecules. As already indicated by the CD25 dataset, a higher rank
approximation is beneficial, whenever correlations between distant bonds occur, e.g., when
intramolecular non-covalent interactions play a role. This observation is confirmed, as higher
deviations are found for molecules with more than 15 flexible bonds, where correlations be-
tween distant bonds are more likely. However, the more critical point seems be the molecular
connectivity. While predominantly linear structures can be described with high accuracy at
an average energy deviation of 0.17 kcal mol™, strongly branched molecules lead to a much
broader distribution including several outliers and therefore a higher average deviation of
0.92kcalmol ™. This indicates a limitation of the inherently linear structure of the T'T, since

some neighboring bonds (at the branching point) are not found in consecutive order in the

TT.
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5.4 Optimal Settings

As the accuracy and time demand of the TTConf approach are strongly dependent on the
assumed rank (r) and the number of sweeps (s), proper settings have to be determined
to ensure reliable results at reasonable computational effort. Increasing r or s results in
sampling of a larger portion of the conformational space, leading to a higher accuracy in
finding the lowest energy conformer. While the choice of r influences the number of evaluated
conformations quadratically, s contributes only linearly. To achieve the target accuracy,
it is thus desirable to use an increased number of sweeps while working with a low-rank
approximation. However, for an optimal cost-accuracy ratio r and s should be chosen as small
as possible, while maintaining the desired accuracy. For this purpose, the CD25 benchmark
set was sampled with a total of 20 different combinations of r and s using the mean AFE
and relative runtime (with respect to CREST’s MTD conformer sampling) as performance

criteria (Fig. 11).

energy deviation relative runtime

(kcal mol-1) (CREST / TTConf)
8 0.11 0.14 0.13 0.06 8 12.6 5.6 3.1 2.1 1.5

normal accurate normal accurate
6 0.26 0.23 0.15 3.9 2.6 1.9
0 0
4 0.26 0.23 0.28 5.2 3.6 2.6
2 0.26 0.33 0.23 8.5 6.6 4.4
2 3 4 5 6 4 5 6
r r

Figure 11: Assessment of the optimal settings for rank and number of sweeps based on the
CD25 dataset. Comparison of the mean energy deviation of the respective lowest energy
TTConf and CREST conformers (left) and the associated mean relative runtimes (right).

As expected, AF decreases when choosing a higher rank and number of sweeps, but
significantly increases the runtime of the sampling procedure. While r = 2, s = 2 provides

an average 24-fold speed up, the average AE of 0.87kcalmol™ indicates an insufficient
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accuracy on average. As seen in Fig. 5, this deviation originates primarily from large and
more branched molecules like Ritonavir (max. deviation of 8 and 6kcalmol '), while the
majority of less branched molecules is handled with sufficient accuracy already at this level.
The computationally most demanding setting of » = 6,s = 8 on the other hand shows
excellent accuracy, but at a significantly reduced speedup of just 1.5 on average. The setting
r = 3,s = 8 provides a good balance between cost and accuracy with an average deviation
AF of 0.11kcalmol™! and an average speed up of 5.6 compared to CREST’s MTD.

Based on these results, we suggest three default settings labeled fast, normal and accurate as
shown in Fig. 11. Besides using fixed default settings, Fig. 5 indicates that a molecule-specific
adjustment of the required rank and number of sweeps based on a molecule’s flexibility and
number of branches can be beneficial. For smaller, less branched molecules and smaller
molecules like Pregabalin, the “fast” setting (r = 2, s = 2) is sufficient, while branched
systems and longer chains (with potential for intramolecular noncovalent interactions) require
more effort. In that case, the “normal” (r = 3, s = 8) or even “accurate” settings (r = 6, s = 8)
should be used. In the supporting information, we provide additional results for selected

molecules (Fig. S7).

6 Conclusions

We present a novel systematic conformer search approach for the investigation of drug-
like molecules called tensor train conformer search (TTConf). Our approach addresses the
inherent combinatorial explosion of grid search algorithms by using a low-rank tensor train
(T'T) representation of the high dimensional tensor of dihedral angle combinations. Through
TT cross approximation this low-rank representation can be achieved with limited number
of energy evaluations, which are typically the most time demanding task. As the algorithm
allows the scaling to be reduced from exponential to polynomial, exploration of the low energy

conformational space of drug-like molecules can be achieved at a significantly reduced time
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demand compared to the current state-of-the-art metadynamics-based conformer search as
implemented in CREST. The current applicability is primarily acyclic molecules, while it was
shown that also different ring structures can be treated. This makes TTConf very suitable
for sampling conformers of a broad variety of organic molecules. Future developments will
focus on an improved ring sampling algorithm, tailoring the tensor network to the respective
molecule for a better description of heavily branched structures. Furthermore, the approach

is to be extended to metal-organic compounds.
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