
Hyperparameter
optimization of hybrid
quantum neural networks
for car classification

Joint Research

Terra Quantum AG
& Volkswagen Group Data Lab

terraquantum.swiss

Hyperparameter optimization of hybrid quantum neural networks for car classification

Asel Sagingalieva, Andrii Kurkin, Artem Melnikov, Daniil Kuhmistrov, Michael Perelshtein, and Alexey Melnikov
Terra Quantum AG, 9400 Rorschach, Switzerland

Andrea Skolik1,3 and David Von Dollen2,3
1Volkswagen Data:Lab, 80805 Munich, Germany

2Volkswagen Group of America, Auburn Hills, MI 48326, USA and
3Leiden University, 2333 CA Leiden, The Netherlands

Image recognition is one of the primary applications of machine learning algorithms. Nevertheless,
machine learning models used in modern image recognition systems consist of millions of param-
eters that usually require significant computational time to be adjusted. Moreover, adjustment of
model hyperparameters leads to additional overhead. Because of this, new developments in machine
learning models and hyperparameter optimization techniques are required. This paper presents a
quantum-inspired hyperparameter optimization technique and a hybrid quantum-classical machine
learning model for supervised learning. We benchmark our hyperparameter optimization method
over standard black-box objective functions and observe performance improvements in the form of
reduced expected run times and fitness in response to the growth in the size of the search space. We
test our approaches in a car image classification task, and demonstrate a full-scale implementation
of the hybrid quantum neural network model with the tensor train hyperparameter optimization.
Our tests show a qualitative and quantitative advantage over the corresponding standard classical
tabular grid search approach used with a deep neural network ResNet34. A classification accuracy
of 0.97 was obtained by the hybrid model after 18 iterations, whereas the classical model achieved
an accuracy of 0.92 after 75 iterations.

INTRODUCTION

The field of quantum computing has seen large leaps
in building usable quantum hardware during the past
decade. As one of the first vendors, D-Wave provided
access to a quantum device that can solve specific types
of optimization problems [1]. Motivated by this, quan-
tum computing has not only received much attention in
the research community, but was also started to be per-
ceived as a valuable technology in industry. Volkswagen
published a pioneering result on using the D-Wave quan-
tum annealer to optimize traffic flow in 2017 [2], which
prompted a number of works by other automotive com-
panies [3–5]. Since then, quantum annealing has been
applied in a number of industry-related problems like
chemistry [6, 7], aviation [8], logistics [9] and finance [10].
Aside from quantum annealing, gate-based quantum de-
vices have gained increased popularity, not least after the
first demonstration of a quantum device outperforming
its classical counterparts [11]. A number of industry-
motivated works have since been published in the three
main application areas that are currently of interest for
gate-based quantum computing: optimization [12–16],
quantum chemistry and simulation [17, 18], and machine
learning [19–23]. Research in the industrial context has
been largely motivated by noisy intermediate-scale quan-
tum (NISQ) devices – early quantum devices with a small
number of qubits and no error correction. In this regime,
variational quantum algorithms (VQAs) have been iden-
tified as the most promising candidate for near-term ad-
vantage due to their robustness to noise [24]. In a VQA,
a parametrized quantum circuit (PQC) is optimized by
a classical outer loop to solve a specific task like finding

the ground state of a given Hamiltonian or classifying
data based on given input features. As qubit numbers
are expected to stay relatively low within the next years,
hybrid alternatives to models realized purely by PQCs
have been explored [25–30]. In these works, a quantum
model is combined with a classical model and optimized
end-to-end to solve a specific task. In the context of ma-
chine learning, this means that a PQC and neural net-
work (NN) are trained together as one model, where the
NN can be placed either before or after the PQC in the
chain of execution. When the NN comes first, it can act
as a dimensionality reduction technique for the quantum
model, which can then be implemented with relatively
few qubits.

In this work, we use a hybrid quantum-classical model
to perform image classification on a subset of the Stan-
ford Cars data set [31]. Image classification is an ubiq-
uitous problem in the automotive industry, and can be
used for tasks like sorting out parts with defects. Su-
pervised learning algorithms for classification have also
been extensively studied in quantum literature [32–35],
and it has been proven that there exist specific learning
tasks based on the discrete logarithm problem where a
separation between quantum and classical learners ex-
ists for classification [36]. While the separation in [36]
is based on Shor’s algorithm and therefore not expected
to transfer to realistic learning tasks as the car classifica-
tion mentioned above, it motivates further experimental
study of quantum-enhanced models for classification on
real-world data sets.

In combining PQCs and classical NNs into hybrid
quantum-classical models, we encounter a challenge in
searching hyperparameter configurations that produce

2

performance gains in terms of model accuracy and train-
ing. Hyperparameters can be considered values that are
set for the model and do not change during the training
regime, and may include variables such as learning rate,
decay rates, choice of optimizer for the model, number of
qubits or layer sizes. Often in practice, these parameters
are selected by experts based upon some a priori knowl-
edge and trial-and-error. This limits the search space,
but in turn can lead to producing a suboptimal model
configuration.

Hyperparameter optimization is the process of au-
tomating the search for the best set of hyperparameters,
reducing the need for expert knowledge in hyperparam-
eter configurations for models, with an increase in com-
putation required to evaluate configurations of models in
search of an optimum. In the 1990s, researchers reported
performance gains leveraging a wrapper method, which
tuned parameters for specific models and data sets using
best-first search and cross validation [37]. In more recent
years, researchers have proposed search algorithms us-
ing bandits [38], which leverage early stopping methods.
Successive Halving algorithms such as the one introduced
in [39] and the parallelized version introduced in [40] al-
locate more resources to more promising configurations.
Sequential model-based optimization leverages Bayesian
optimization with an aggressive dual racing mechanism,
and also has shown performance improvements for hy-
perparameter optimization [41, 42]. Evolutionary and
population-based heuristics for black-box optimization
have also achieved state-of-the-art results when applied
to hyperparameter optimization in numerous competi-
tions for black-box optimization [43–45]. In recent years,
a whole field has formed around automating the process
of finding optimal hyperparameters for machine learn-
ing models, with some prime examples being neural ar-
chitecture search [46] and automated machine learning
(AutoML) [47]. Automating the search of hyperparame-
ters in a quantum machine learning (QML) context has
also started to attract attention, and the authors of [48]
have explored the first version of AutoQML.

Our contribution in this paper is not only to examine
the performance gains of hybrid quantum-classical mod-
els vs. purely classical, but also to investigate whether
quantum-enhanced or quantum-inspired methods may
offer an advantage in automating the search over the
configuration space of the models. We show a reduction
in computational complexity in regard to expected run
times and evaluations for various configurations of mod-
els, the high cost of which motivate this investigation.
We investigate using the tensor train decomposition for
searching the hyperparameter space of the HQNN framed
as a global optimization problem as in [49]. This method
has been successful in optimizing models of social net-
works in [50], and as a method of compression for deep
neural networks [51].

RESULTS

A. Hyperparameter Optimization

The problem of hyperparameter optimization (HPO)
is described schematically in Fig. 1(a). Given a certain
data set and a machine learning (ML) model, the learn-
ing model demonstrates an accuracy A(h̄) which depends
on the hyperparameters h̄. To achieve the best possi-
ble model accuracy, one has to optimize the hyperpa-
rameters. To perform the HPO, an unknown black-box
function A(h̄) has to be explored. The exploration is an
iterative process, where at each iteration the HPO algo-
rithm provides a set of hyperparameters h̄ and receives
the corresponding model accuracy A(h̄). As a result of
this iterative process, the HPO algorithm outputs the
best achieved performance A(h̄opt) with the correspond-
ing hyperparameters h̄opt.
The HPO could be organized in different ways. One

of the standard methods for HPO is a tabular method
of grid search (GS), also known as a parameter sweep
(Fig. 1(b)). To illustrate how a grid search works, we
have chosen two hyperparameters: the learning rate (h1)
and the multiplicative factor of learning rate (h2). They
are plotted along the x-axis and the y-axis, respectively.
The color on the contour shows the accuracy of the model
A(h1, h2) with two given hyperparameters changing from
light pink (the lowest accuracy) to dark green (the high-
est accuracy). In the GS method, the hyperparameter
values are discretized, which results in a grid of values
shown as big dots. The GS algorithm goes through all
the values from this grid with the goal of finding the
maximum accuracy. As one can see in this figure, there
are only three points at which this method can find a
high accuracy with 25 iterations (shown as 25 points in
Fig. 1(b)). This example shows that there could be a bet-
ter tabular HPO in terms of the best achievable accuracy
and the number of iterations used.

B. Tensor train approach to hyperparameter
optimization

Here, we propose a quantum-inspired approach to hy-
perparameter optimization based on the tensor train
(TT) programming. The TT approach was initially in-
troduced in the context of quantum many-body system
analysis, e.g., for finding a ground state with minimal
energy of multi-particle Hamiltonians via Density Matrix
Renormalization Groups (DMRG) [52]. In this approach,
the ground state is represented in the TT format, often
referred to as the Matrix Product State in physics [53].
We employ the TT representation (shown in Fig. 1(c))
in another way here, and use it for the hyperparameter
optimization. As one can see in Fig. 1(c), the TT is repre-
sented as a multiplication of tensors, where an individual
tensor is shown as a circle with the number of “legs” that
corresponds to the rank of the tensor. h1 and hd circles

3

Grid search Hyperparameter optimization

Dataset
Deep

learning
model

Hyperparameter
optimization
algorithm

Optimal set of
hyperparameters

giving best performance

Model accuracy

Set of
hyperparameters

FIG. 1: The hyperparameter optimization problem description (a). The tabular methods for hyperparameter optimization:
the grid search algorithm (b) and the tensor train algorithm (c-d).

are the matrices of n × r dimension, and {hi}i=d−1
i=2 is a

rank 3 tensor of dimensions n×r2. The two arrows in the
Fig. 1(c) illustrate sweeps right and left along with the
TT. This refers to the algorithm described below. Lever-
aging the locality of the problem, i.e., a small correlation
between hyperparameters, we perform the black-box op-
timization based on the cross-approximation technique
applied for tensors [54, 55].

Similar to the previously discussed GS method, we dis-
cretize the hyperparameter space with TT optimization
(TTO) and then consider a tensor composed of scores
that can be estimated by running an ML model with a
corresponding set of hyperparameters. However, com-
pared to GS, the TT method is dynamic, which means
that the next set of evaluating points in the hyperparam-
eter space is chosen based on the knowledge accumulated
during all previous evaluations. With TTO we will not
estimate all the scores A(h̄) available to the model. In-
stead of this, we will approximate A(h̄) via TT, referring
to a limited number of tensor elements using the cross-
approximation method [54]. During the process, new sets
of hyperparameters for which the model needs to be eval-
uated are determined using the MaxVol routine [56]. The
MaxVol routine is an algorithm that finds an r × r sub-
matrix of maximum volume, i.e., a square matrix with a
maximum determinant module in an n× r matrix.

Hyperparameters are changed in an iterative process,
in which one is likely to find a better accuracy A(h̄) after

each iteration, and thus find a good set of hyperparam-
eters. Notably, the TTO algorithm requires an estimate
of O(dnr2) elements and O(dnr3) of calculations, where
d is the number of hyperparameters, n is a number of
discretization points, and r is a fixed rank. If one com-
pares it with the GS algorithm, which requires estimation
of O(nd) elements, one is expected to observe practical
advantages, especially with a large number of hyperpa-
rameters.
The TTO algorithm for the HPO is presented as

the Algorithm 1 pseudocode that also corresponds to
Fig. 1(d). The TTO algorithm can be described with
9 steps:

1. Suppose each of d hyperparameters is defined on
some interval hi ∈ [hmin

i , hmax
i], where i ∈ [1, d].

One first discretizes each of d hyperparameters by
defining n points

{hi(1), hi(2), . . . , hi(n)}i=d
i=1.

2. Then, we need to choose the rank r. This choice is
a trade-off between computational time and accu-
racy, which respectively require a small and a large
rank.

3. r combinations of

{h1
2(j), h

1
3(j), . . . , h

1
d(j)}

j=r

j=1. (1)

are chosen.

4

Algorithm 1 Tensor Train Optimization

1: Accuracy A(h̄opt) = 0
2: iswp = 1
3: Core = 1
4: jswp = 1
5: Discretize each of d hyperparameters with n points
6: Randomly choose r combinations of (h2, h3, . . . , hd)
7: while iswp ≤ nswp do
8: while jswp ≤ 2 do
9: while Core < d do

10: if Core == 1 then
11: Estimate A(h) of nr elements with all n val-

ues of h1

12: if A(h̄opt) < A(h̄) then
13: A(h̄opt) = A(h̄)
14: end if
15: MaxVol

16: Fix corresponding r values of h1

17: else
18: Estimate A(h̄) of nr2 elements for fixed

(h1, . . . , hCore−1) with all n values of hCore

19: if A(h̄opt) < A(h̄) then
20: A(h̄opt) = A(h̄)
21: end if
22: MaxVol

23: Fix corresponding r values of (h1, . . . , hCore)
24: end if
25: Core = Core + 1
26: end while
27: Change index order (hd, . . . , h1)
28: Relabel (h1, . . . , hd)
29: Core = 1
30: jswp = jswp + 1
31: end while
32: jswp = 1
33: iswp = iswp + 1
34: end while

4. In the next three steps, we implement an iterative
process called the “sweep right”. The first step of
this iterative process is related to the first TT core
evaluation:

• The accuracy of nr elements is estimated
with all n values of the first hyperparame-

ter {h1(i1)}i1=n
i1=1 and for the r combinations

of {h1
2(j), h

1
3(j), . . . , h

1
d(j)}

j=r

j=1:

{A(h1(i1), h
1
2(j), h

1
3(j), . . . ,

h1
d(j))}

j=r,i1=n

j=1,i1=1 .
(2)

• In this matrix of size n×r we search for a sub-
matrix with maximum determinant module:

{A(h1
1(i1), h

1
2(j), h

1
3(j), h

1
d(j))}

j=r,i1=r

j=1,i1=1. (3)

The corresponding r values of the first hyper-
parameter are fixed {h1

1(i1)}
i1=r
i1=1.

5. The next step of this iterative process is related to
the second TT core evaluation:

• We fix r values {h1
1(i1)}

i1=r
i1=1 of the pre-

vious step as well as r combinations

{h1
3(j), h

1
4(j), . . . , h

1
d(j)}

j=r

j=1 of the third step.

We, then, estimate the accuracy of the nr2

elements with all n values of the second hy-

perparameter {h2(i2)}i2=n
i2=1 :

{A(h1
1(i1), h2(i2), h

1
3(j), . . . ,

h1
d(j))}

j=r,i1=r,i2=n

j=1,i1=1,i2=1‘
(4)

• Again, in this matrix of size nr × r we search
for a submatrix with the maximum determi-
nant module:

{A((h2
1(k), h

2
2(k)), h

1
3(j), . . . ,

h1
d(j))}

j=r,k=r

j=1,k=1

(5)

r combinations {(h2
1(k), h

2
2(k))}

k=r
k=1 of the first

and the second hyperparameters are fixed.

6. The d− 1 TT core evaluation:

• We fix r combinations

{(hd−2
1 (k), hd−2

2 (k), . . . , hd−2
d−2(k))}

k=r

k=1
of

the d − 2 TT core as well as r combinations
{h1

d(j)}
j=r

j=1 of the third step. We, then,

estimate the accuracy of the nr2 elements

with all n values of the {hd−1(id)}id=n
id=1 :

{A((hd−2
1 (k), . . . , hd−2

d−2(k)),

hd−1(id−1), h
1
d(j))}

k=r,id−1=n,j=r

k=1,id−1=1,j=1

(6)

• Again, in this matrix of size nr × r we search
for a submatrix with the maximum determi-
nant module:

{A((hd−1
1 (k), hd−1

2 (k), . . . ,

hd−1
d−1(k)), h

1
d(j))}

k=r,j=r

k=1,j=1

(7)

r combinations of

{(hd−1
1 (k), hd−1

2 (k), . . . , hd−1
d−1(k)}

k=r

k=1
hy-

perparameters are fixed.

The end of one “sweep right” is reached.

7. Similar to step 3, we have r combinations of hyper-
parameters, but they are not random anymore. We
next perform a similar procedure in the reverse di-
rection (from the last hyperparameter to the first).
The process is called the “sweep left”.

One first changes the index order:

{(hd−1
1 (k), hd−1

2 (k), . . . , hd−1
d−1(k)}

k=r

k=1
=⇒ relabel

{(hd−1
d−1(k), h

d−1
d−2(k), . . . , h

d−1
2 (k)}j=r

j=1
(8)

And then, continues from the fourth step of the
TTO algorithm.

5

8. A combination of the “sweep right” and the “sweep
left” is a full sweep. We do nswp full sweeps in this
algorithm.

9. During all the iterations, we record it if we estimate
a new maximum score.

C. Benchmarking HPO Methods

FIG. 2: Tensor Train (TT) and Grid Search (GS): Ex-
pected Runtime in maximum objective function evaluations
vs. growth of problem dimension d.

In order to ascertain the solution quality in our
proposed method for hyperparameter optimization, we
tested over three black-box objective functions. These
functions included the Schwefel, Fletcher-Powell, and
Vincent functions from the optproblems Python li-
brary [57]. We ran 100 randomly initialized trails and
recorded average fitness and maximum number of func-
tion evaluations in response to the change in the prob-
lem size d for each objective function. We compared
grid search (GS) and tensor train (TT) - both tabular
methods for hyperparameter optimization. For tensor
train and grid search, we partitioned the hyperparam-
eter ranges with 4 discrete points per hyperparameter.
For tensor train we set the rank parameter r = 2.

D. Car Classification with Hybrid Quantum
Neural Networks

Computer vision and classification systems are ubiqui-
tous within the mobility and automotive industries. In
this article, we investigate the car classification problem
using the Car data set [58] provided by Stanford CS De-
partment. Examples of cars in the data set are shown
in Fig. 3. The Stanford Cars data set contains 16,185
images of 196 classes of cars. The data is split into 8,144
training images and 8,041 testing images. The classes are

Schwefel
HPO Method Average Fitness d ER
TT -541.76 3 32
GS -541.76 3 64
TT -1083.53 6 80
GS -1083.53 6 4092
TT -1805.89 10 144
GS -1805.89 10 10000

Fletcher-Powell
HPO Method Average Fitness d ER
TT 5136.64 3 32
GS 4113.78 3 64
TT 23954.5 6 80
GS 14295.2 6 4092
TT 78101.4 10 144
GS 36890.11 10 10000

Vincent
HPO Method Average Fitness d ER
TT -0.232 3 32
GS -0.243 3 64
TT -0.242 6 80
GS -0.243 6 4092
TT -0.241 10 144
GS -0.243 10 10000

TABLE I: Table of results comparing HPO methods for
Schwefel, Fletcher-Powell, and Vincent objective functions.
Average fitness values and Expected Runtimes (ER) in max-
imum function evaluations were calculated over 100 runs for
varying sizes of problem dimension d (lower is better). Meth-
ods obtaining the best average fitness are highlighted in bold,
with ties broken by lower ER.

typically at the combination of Make, Model, Year, e.g.,
Volkswagen Golf Hatchback 1991 or Volkswagen Beetle
Hatchback 2012. Since the images in this data set have
different sizes, we resized all images to 400 by 400 pixels.
In addition, we apply random rotations by maximum 15◦,
random horizontal flips, and normalization to the train-
ing data. For testing data, only normalization has been
applied.
We use transfer learning to solve the car classifica-

tion problem. Transfer learning is a powerful method
for training neural networks in which experience in solv-
ing one problem helps in solving another problem [59]. In
our case, the ResNet (Residual Neural Network) [60] is
pretrained on the ImageNet data set [61], and is used as
a base model. One can fix the weights of the base model,
but if the base model is not flexible enough, one can
“unfreeze” certain layers and make it trainable. Training
deep networks is challenging due to the vanishing gra-
dient problem, but ResNet solves this problem with so-
called residual blocks: inputs are passed to the next layer
in the residual block. In this way, deeper layers can see in-
formation about the input data. ResNet has established
itself as a robust network architecture for solving image
classification problems. We dowloaded ResNet34 via Py-
Torch [62], where the number after the model name, 34,
indicates the number of layers in the network.
As shown in the Fig. 3(a), in the classical network af-

6

Classical layer
Fully-connected layer

n k

Quantum layer
Fully-connected layer

n n

Car image,
number of features

 per image

C
ar

 m
od

el
p
re

d
ic

ti
on

Classical layer
Fully-connected layer

512 n

Classical layer
Fully-connected layer

Classical layer
Fully-connected layer

512 n

R
es

N
et

34

C
ar

 m
o
d
el

p
re

d
ic

ti
o
n Audi S4 Sedan 2007

Audi TT RS Coupe 2012
VW Golf Hatchback 2012
VW Golf Hatchback 1991
VW Beetle Hatchback 2012
…

Classical layer
Fully-connected layer

R
es

N
et

34

Car image,
number of features

 per image n nq knq

FIG. 3: Classical (a) and Hybrid (b) quantum neural network architectures.

ter ResNet34 we add three fully-connected layers. Each
output neuron corresponds to a particular class of the
classification problem, e.g., Volkswagen Golf Hatchback
1991 or Volkswagen Beetle Hatchback 2012. The out-
put neuron with the largest value determines the output
class. Since the output from the ResNet34 is composed
of 512 features, the first fully-connected layer consists of
512 input neurons and a bias neuron and n output fea-
tures. The second fully-connected layer connects n input
neurons and a bias neuron with nq output features. The
value of n and q can vary, thus changing the number of
weights in the classical network. Since the network classi-
fies k classes in the general case, the third fully-connected
layer takes nq neurons and a bias neuron as input and
feeds k neurons as output.

In the hybrid analog as shown in Fig. 3(b) we replace
the second fully-connected layer with a quantum one. It
is worth noting that the number of qubits used for the
efficient operation of the model is initially unknown. In
the quantum layer, the Hadamard transform is applied
to each qubit, then the input data is encoded into the
angles of rotation along the y-axis. The variational layer
consists of the application of the CNOT gate and rotation
along x, y, z-axes. The number of variational layers can
vary. Accordingly, the number of weights in the hybrid
network can also change. The measurement is made in
the X-basis. For each qubit, the local expectation value
of the X operator is measured. This produces a classi-
cal output vector, suitable for additional post-processing.
Since the optimal number of variational layers (q, depth
of quantum circuit) and the optimal number of qubits
n are not known in advance, we choose these values as
hyperparameters.

We use the cross-entropy as a loss function

l = −
k∑

c=1

yc log pc (9)

where pc is the prediction probability, yc is 0 or 1, deter-
mining respectively if the image belongs to the predic-
tion class, and k is the number of classes. We run our
model for 10 epochs and apply weight decay and gradi-
ent clipping to prevent interference from large gradient or
weight values. We use the Adam optimizer [63, 64] and
reduce the learning rate after several epochs. There is
no one-size-fits-all rule of how to choose a learning rate.
Moreover, in most cases, dynamic control of the learning
rate of a neural network can significantly improve the
efficiency of the backpropagation algorithm. For these
reasons, we choose the initial learning rate, the period
of learning rate decay, and the multiplicative factor of
the learning rate decay as hyperparameters. In total,
together with number of variational layers and number
of qubits, we optimize five hyperparameters presented in
Table II to improve the accuracy of solving the problem
of car classification.

E. Simulation Results

We next perform a simulation of the hybrid quantum
residual neural network described in the previous sec-
tion. The simulation is compared to its classical analog,
the residual neural network, in a test car classification
task. Because of the limited number of qubits available
and computational time constraints, we used a classifi-
cation between two classes, Volkswagen Golf Hatchback
1991 and Volkswagen Beetle Hatchback 2012, to com-
pare the classical and hybrid networks fairly. In total,

7

FIG. 4: (a) Dependence of accuracy on the number of iterations HPO. TTO for the hybrid model found a set of hyperparameters
that gives an accuracy of 0.852 after 6 iterations, 0.977 after 18 iterations, for the classical model found 0.977 after 6 iterations.
Grid search for the hybrid model found a set of hyperparameters that gives an accuracy of 0.989 after 75 iterations, for the
classical model found 0.920 after 75 iterations. (b) Dependence of accuracy on the number of epochs with the found optimal
set of hyperparameters.

Hyperparameter Label Range Hybrid
HPO
values

Classical
HPO
values

number of qubits,
number of neurons

n 4− 16 13 5

depth of quantum
circuit

q 1− 5 4 ×

number of neurons nq 4− 80 × 80
initial learning rate α0 1−10×

10−4
5×10−4 5× 10−4

step of learning rate αδ 1− 8 8 5
multiplicative factor of
learning rate decay

αr 0.1 −
0.2

0.1 0.2

TABLE II: The table shows which hyperparameters are being
optimized, their labels, limits of change, and the best values
found during HPO.

we used 88 testing images and 89 training images. Both
the hybrid quantum HQNN model, and the classical NN
model, were used together with the GS and TTO meth-
ods for hyperparameter optimization. All machine learn-
ing simulations were carried out in the QMware cloud,
on which the classical part was implemented with the
PyTorch framework, and the quantum part was imple-
mented with the <basiq> SDK [65]. The results of the
simulations are shown in Fig. 4.

Fig. 4(a) shows the dependence of accuracy on the
number of HPO iterations on the test data, where one
iteration of HPO is one run of the model. Green color
shows the dependence of accuracy on the number of it-
erations for the HQNN, blue color shows for the classical
NN. As one can see from Fig. 4(a), TTO works more
efficiently than GS and in fewer iterations finds hyperpa-
rameters that give an accuracy above 0.9. HQNN with
TTO (marked with green crosses) finds a set of hyperpa-
rameters that yields 97.7% accuracy over 18 iterations.
As for the GS (marked solid green line), it took 44 iter-

ations to pass the threshold of 98% accuracy.
TTO finds in 6 iterations a set of hyperparameters for

the classical NN, which gives an accuracy of 97.7%, which
is the same as the accuracy given by the set of hyperpa-
rameters for the HQNN that found in 18 iterations. As
for the GS, it is clear that the optimization for the HQNN
works more efficiently than for the classical one. And
the optimization of the HQNN requires fewer iterations
to achieve higher accuracy compared to the optimization
of the classical NN. A possible reason is that a quan-
tum layer with a relatively large number of qubits and a
greater depth works better than its classical counterpart.

Volkswagen Golf Hatchback 1991

Volkswagen Beetle Hatchback 2012

FIG. 5: Examples of test car images that were correctly clas-
sified by the hybrid quantum residual neural network.

The best values found during HPO are displayed in
Table II. The quantum circuit corresponding to the op-
timal set of hyperparameters has 52 variational param-
eters, leading to a total of 6749 weights in the HQNN.
In the classical NN there are 9730 weights. Therefore,
there are significantly fewer weights in a HQNN com-

8

pared to a classical NN. Nevertheless, as can be seen
from the Fig. 4(b), the HQNN, with the hyperparame-
ters found using the GS, reaches the highest overall ac-
curacy (98.9%). The Fig. 5 shows examples of car im-
ages that were classified correctly by the HQNN model.
The HQNN with an optimized set of hyperparameters
achieved an accuracy of 0.989.

DISCUSSION

We introduced two new ML developments to image
recognition. First, we presented a quantum-inspired
method of tensor train decomposition for choosing ML
model hyperparameters. This decomposition enabled
us to optimize hyperparameters similar to other tabu-
lar search methods, e.g., grid search, but required only
O(dnr2) hyperparameter choices instead of O(nd) in the
grid search method. We verified this method over vari-
ous black box functions and found that the tensor train
method achieved comparable results in average fitness,
with a reduced expected run time for most of the test
functions compared to grid search. This indicates that
this method may be useful for high dimensional hyperpa-
rameter searches for expensive black-box functions. Fu-
ture work could investigate using this method in combi-
nation with local search heuristic, where the tensor train
optimizer performs a sweep over a larger search space
within a budget, and seeds another optimization routine
for a local search around this region. This method could
also be applied to the B/n problem for successive halv-

ing algorithm by decomposing the search space to find
the optimal ratio of budget B over configurations n. Fu-
ture work could investigate these applications in more
detail.

Second, we presented a hybrid quantum neural net-
work model for supervised learning. The hybrid model
consisted of the combination of ResNet34 and a quantum
circuit part, whose size and depth became the hyperpa-
rameters. The size and flexibility of the hybrid ML model
allowed us to apply it to car image classification. The hy-
brid ML model with GS showed an accuracy of 0.989 after
75 iterations in our binary classification tests with images
of Volkswagen Golf Hatchback 1991 and Volkswagen Bee-
tle Hatchback 2012. This accuracy was better than of a
comparable classical ML model with GS showed an ac-
curacy of 0.920 after 75 iterations. In the same test, the
hybrid ML model with TTO showed an accuracy of 0.977
after 18 iterations, whereas the comparable classical ML
model with TTO, which showed the same accuracy of
0.977 after 6 iterations. Our developments provide new
ways of using quantum and quantum-inspired methods in
practical industry problems. In future research, explor-
ing the sample complexity of the hybrid quantum model
is of importance, in addition to generalization bounds of
the quantum models similar to research in Ref. [66]. Fu-
ture work could also entail investigating state-of-the-art
improvements in hyperparameter optimization for classi-
cal and quantum-hybrid neural networks and other ma-
chine learning models by leveraging quantum-inspired or
quantum-enhanced methods.

[1] Mark W Johnson, Mohammad HS Amin, Suzanne
Gildert, Trevor Lanting, Firas Hamze, Neil Dickson,
Richard Harris, Andrew J Berkley, Jan Johansson, Paul
Bunyk, et al. Quantum annealing with manufactured
spins. Nature, 473(7346):194–198, 2011.

[2] Florian Neukart, Gabriele Compostella, Christian Seidel,
David Von Dollen, Sheir Yarkoni, and Bob Parney. Traf-
fic flow optimization using a quantum annealer. Frontiers
in Information and Communication Technologies, 4:29,
2017.

[3] Arpit Mehta, Murad Muradi, and Selam Woldetsadick.
Quantum annealing based optimization of robotic move-
ment in manufacturing. In International Workshop on
Quantum Technology and Optimization Problems, pages
136–144. Springer, 2019.

[4] Masayuki Ohzeki, Akira Miki, Masamichi J Miyama, and
Masayoshi Terabe. Control of automated guided vehicles
without collision by quantum annealer and digital de-
vices. Frontiers in Computer Science, 1:9, 2019.

[5] Sheir Yarkoni, Alex Alekseyenko, Michael Streif, David
Von Dollen, Florian Neukart, and Thomas Bäck. Multi-
car paint shop optimization with quantum annealing. In
2021 IEEE International Conference on Quantum Com-
puting and Engineering (QCE), pages 35–41. IEEE, 2021.

[6] Michael Streif, Florian Neukart, and Martin Leib. Solv-

ing quantum chemistry problems with a d-wave quan-
tum annealer. In International Workshop on Quantum
Technology and Optimization Problems, pages 111–122.
Springer, 2019.

[7] Rongxin Xia, Teng Bian, and Sabre Kais. Electronic
structure calculations and the ising hamiltonian. The
Journal of Physical Chemistry B, 122(13):3384–3395,
2017.

[8] Tobias Stollenwerk, Bryan O’Gorman, Davide Ven-
turelli, Salvatore Mandra, Olga Rodionova, Hokkwan
Ng, Banavar Sridhar, Eleanor Gilbert Rieffel, and
Rupak Biswas. Quantum annealing applied to de-
conflicting optimal trajectories for air traffic manage-
ment. IEEE Transactions on Intelligent Transportation
Systems, 21(1):285–297, 2019.

[9] Sebastian Feld, Christoph Roch, Thomas Gabor, Chris-
tian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. A hybrid solu-
tion method for the capacitated vehicle routing problem
using a quantum annealer. Frontiers in Information and
Communication Technologies, 6:13, 2019.

[10] Erica Grant, Travis S Humble, and Benjamin Stump.
Benchmarking quantum annealing controls with portfo-
lio optimization. Physical Review Applied, 15(1):014012,
2021.

9

[11] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio
Boixo, Fernando GSL Brandao, David A Buell, et al.
Quantum supremacy using a programmable supercon-
ducting processor. Nature, 574(7779):505–510, 2019.

[12] Michael Streif, Sheir Yarkoni, Andrea Skolik, Florian
Neukart, and Martin Leib. Beating classical heuristics
for the binary paint shop problem with the quantum ap-
proximate optimization algorithm. Physical Review A,
104(1):012403, 2021.

[13] Michael Streif and Martin Leib. Training the quantum
approximate optimization algorithm without access to a
quantum processing unit. Quantum Science and Tech-
nology, 5(3):034008, 2020.

[14] David Amaro, Matthias Rosenkranz, Nathan Fitzpatrick,
Koji Hirano, and Mattia Fiorentini. A case study of
variational quantum algorithms for a job shop scheduling
problem. arXiv preprint arXiv:2109.03745, 2021.

[15] Constantin Dalyac, Löıc Henriet, Emmanuel Jeandel,
Wolfgang Lechner, Simon Perdrix, Marc Porcheron,
and Margarita Veshchezerova. Qualifying quantum ap-
proaches for hard industrial optimization problems. a
case study in the field of smart-charging of electric ve-
hicles. EPJ Quantum Technology, 8(1):12, 2021.

[16] Andre Luckow, Johannes Klepsch, and Josef Pichlmeier.
Quantum computing: Towards industry reference prob-
lems. arXiv preprint arXiv:2103.07433, 2021.

[17] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C Bardin, Rami Barends, Sergio Boixo, Michael
Broughton, Bob B Buckley, David A Buell, et al. Hartree-
fock on a superconducting qubit quantum computer. Sci-
ence, 369(6507):1084–1089, 2020.

[18] Fionn D Malone, Robert M Parrish, Alicia R Welden,
Thomas Fox, Matthias Degroote, Elica Kyoseva, Niko-
laj Moll, Raffaele Santagati, and Michael Streif. To-
wards the simulation of large scale protein-ligand inter-
actions on nisq-era quantum computers. arXiv preprint
arXiv:2110.01589, 2021.

[19] Manuel S Rudolph, Ntwali Bashige Toussaint, Amara
Katabarwa, Sonika Johri, Borja Peropadre, and Alejan-
dro Perdomo-Ortiz. Generation of high-resolution hand-
written digits with an ion-trap quantum computer. arXiv
preprint arXiv:2012.03924, 2020.

[20] Andrea Skolik, Jarrod R McClean, Masoud Mohseni,
Patrick van der Smagt, and Martin Leib. Layerwise learn-
ing for quantum neural networks. Quantum Machine In-
telligence, 3(1):1–11, 2021.

[21] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quan-
tum agents in the gym: a variational quantum algorithm
for deep q-learning. arXiv preprint arXiv:2103.15084,
2021.

[22] Evan Peters, Joao Caldeira, Alan Ho, Stefan Le-
ichenauer, Masoud Mohseni, Hartmut Neven, Panagiotis
Spentzouris, Doug Strain, and Gabriel N Perdue. Ma-
chine learning of high dimensional data on a noisy quan-
tum processor. arXiv preprint arXiv:2101.09581, 2021.

[23] Javier Alcazar, Vicente Leyton-Ortega, and Alejandro
Perdomo-Ortiz. Classical versus quantum models in ma-
chine learning: insights from a finance application. Ma-
chine Learning: Science and Technology, 1(3):035003,
2020.

[24] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R
McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio,

et al. Variational quantum algorithms. Nature Reviews
Physics, pages 1–20, 2021.

[25] Shi-Xin Zhang, Zhou-Quan Wan, Chee-Kong Lee,
Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Varia-
tional quantum-neural hybrid eigensolver. arXiv preprint
arXiv:2106.05105, 2021.

[26] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria
Schuld, and Nathan Killoran. Transfer learning in hy-
brid classical-quantum neural networks. Quantum, 4:340,
2020.

[27] Chen Zhao and Xiao-Shan Gao. Qdnn: Dnn
with quantum neural network layers. arXiv preprint
arXiv:1912.12660, 2019.

[28] Tong Dou, Kaiwei Wang, Zhenwei Zhou, Shilu Yan, and
Wei Cui. An unsupervised feature learning for quantum-
classical convolutional network with applications to fault
detection. In 2021 40th Chinese Control Conference
(CCC), pages 6351–6355. IEEE, 2021.

[29] Alessandro Sebastianelli, Daniela Alessandra Zaidenberg,
Dario Spiller, Bertrand Le Saux, and Silvia Liberata Ullo.
On circuit-based hybrid quantum neural networks for re-
mote sensing imagery classification. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, 15:565–580, 2021.

[30] Sayantan Pramanik, M Girish Chandra, CV Sridhar,
Aniket Kulkarni, Prabin Sahoo, Vishwa Chethan DV,
Hrishikesh Sharma, Ashutosh Paliwal, Vidyut Navelkar,
Sudhakara Poojary, et al. A quantum-classical hybrid
method for image classification and segmentation. arXiv
preprint arXiv:2109.14431, 2021.

[31] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 3d object representations for fine-grained categoriza-
tion. In 4th International IEEE Workshop on 3D Repre-
sentation and Recognition (3dRR-13), Sydney, Australia,
2013.

[32] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme,
Aram W Harrow, Abhinav Kandala, Jerry M Chow, and
Jay M Gambetta. Supervised learning with quantum-
enhanced feature spaces. Nature, 567(7747):209–212,
2019.

[33] Maria Schuld and Nathan Killoran. Quantum machine
learning in feature hilbert spaces. Physical Review Let-
ters, 122(4):040504, 2019.

[34] Maria Schuld, Alex Bocharov, Krysta M Svore, and
Nathan Wiebe. Circuit-centric quantum classifiers. Phys-
ical Review A, 101(3):032308, 2020.

[35] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd.
Quantum support vector machine for big data classifica-
tion. Physical Review Letters, 113(13):130503, 2014.

[36] Yunchao Liu, Srinivasan Arunachalam, and Kristan
Temme. A rigorous and robust quantum speed-up in su-
pervised machine learning. Nature Physics, 17(9):1013–
1017, 2021.

[37] Ron Kohavi and George H. John. Automatic parame-
ter selection by minimizing estimated error. In Armand
Prieditis and Stuart Russell, editors, Machine Learn-
ing Proceedings 1995, pages 304–312. Morgan Kaufmann,
San Francisco (CA), 1995.

[38] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter opti-
mization. The Journal of Machine Learning Research,
18(1):6765–6816, 2017.

[39] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost

10

optimal exploration in multi-armed bandits. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research,
pages 1238–1246, Atlanta, Georgia, USA, 2013. PMLR.

[40] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh,
Ekaterina Gonina, Moritz Hardt, Benjamin Recht, and
Ameet Talwalkar. Massively parallel hyperparameter
tuning. arXiv preprint arXiv:1810.05934, 2018.

[41] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Sequential model-based optimization for general algo-
rithm configuration. In Carlos A. Coello Coello, edi-
tor, Learning and Intelligent Optimization, pages 507–
523. Springer Berlin Heidelberg, 2011.

[42] Marius Lindauer and Frank Hutter. Warmstarting of
model-based algorithm configuration. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1), 2018.

[43] Diederick Vermetten, Hao Wang, Carola Doerr, and
Thomas Bäck. Sequential vs. integrated algorithm se-
lection and configuration: A case study for the modular
cma-es. arXiv preprint arXiv:1912.05899, 2020.

[44] Thomas Bäck. Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Program-
ming, Genetic Algorithms. Oxford University Press, Inc.,
USA, 1996.

[45] Noor Awad, Gresa Shala, Difan Deng, Neeratyoy
Mallik, Matthias Feurer, Katharina Eggensperger, An-
dre’ Biedenkapp, Diederick Vermetten, Hao Wang, Car-
ola Doerr, Marius Lindauer, and Frank Hutter. Squirrel:
A switching hyperparameter optimizer. arXiv preprint
arXiv:2012.08180, 2020.

[46] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997–2017, 2019.

[47] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren.
Automated Machine Learning: Methods, Systems, Chal-
lenges. Springer Nature, 2019.

[48] Raúl Berganza Gómez, Corey O’Meara, Giorgio Cor-
tiana, Christian B. Mendl, and Juan Bernabé-Moreno.
Towards autoqml: A cloud-based automated cir-
cuit architecture search framework. arXiv preprint
arXiv:2202.08024, 2022.

[49] Dmitry Zheltkov and Alexander Osinsky. Global opti-
mization algorithms using tensor trains. Lecture Notes
in Computer Science, 11958:197–202, 2020.

[50] Sergey Kabanikhin, Olga Krivorotko, Shuhua Zhang,
Victoriya Kashtanova, and Yufang Wang. Tensor train
optimization for mathematical model of social networks.
arXiv preprint arXiv:1906.05246, 2019.

[51] Dingheng Wang, Guangshe Zhao, Hengnu Chen, Zhex-
ian Liu, Lei Deng, and Guoqi Li. Nonlinear tensor train
format for deep neural network compression. Neural Net-
works, 144:320–333, 2021.

[52] Steven R. White. Density matrix formulation for quan-
tum renormalization groups. Physical Review Letters,
69:2863–2866, 1992.

[53] J. Ignacio Cirac, David Pérez-Garćıa, Norbert Schuch,
and Frank Verstraete. Matrix product states and pro-
jected entangled pair states: Concepts, symmetries, the-
orems. Reviews of Modern Physics, 93(4), 2021.

[54] Ivan Oseledets and Eugene Tyrtyshnikov. Tt-cross ap-
proximation for multidimensional arrays. Linear Algebra
and its Applications, 432(1):70–88, 2010.

[55] Dmitry Zheltkov and Eugene Tyrtyshnikov. Global op-

timization based on tt-decomposition. Russian Jour-
nal of Numerical Analysis and Mathematical Modelling,
35(4):247–261, 2020.

[56] Sergei Goreinov, Ivan Oseledets, D. Savostyanov, E. Tyr-
tyshnikov, and Nickolai Zamarashkin. How to find a good
submatrix. Matrix Methods: Theory, Algorithms and Ap-
plications, 2010.

[57] optproblems. https://pypi.org/project/

optproblems/, 2022.
[58] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-

Fei. 3d object representations for fine-grained categoriza-
tion. In 4th International IEEE Workshop on 3D Repre-
sentation and Recognition (3dRR-13), Sydney, Australia,
2013.

[59] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
What is being transferred in transfer learning? arXiv
preprint arXiv:2008.11687, 2020.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

[61] Imagenet dataset. https://image-net.org/, 2022.
[62] PyTorch. https://pytorch.org/, 2022.
[63] Adam optimizer. https://pytorch.org/docs/stable/

generated/torch.optim.Adam.html, 2022.
[64] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[65] QMware, The first global quantum cloud. https://

qm-ware.com, 2022.
[66] Matthias C Caro, Hsin-Yuan Huang, M Cerezo, Ku-

nal Sharma, Andrew Sornborger, Lukasz Cincio, and
Patrick J Coles. Generalization in quantum ma-
chine learning from few training data. arXiv preprint
arXiv:2111.05292, 2021.

https://pypi.org/project/optproblems/
https://pypi.org/project/optproblems/
https://image-net.org/
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://qm-ware.com
https://qm-ware.com

	INTRODUCTION
	RESULTS
	Hyperparameter Optimization
	Tensor train approach to hyperparameter optimization
	Benchmarking HPO Methods
	Car Classification with Hybrid Quantum Neural Networks
	Simulation Results

	DISCUSSION
	References

